MicroRNA221 is Involved in Human Placental Development by Targeting DDIT4
Bo Hua Guangtao Xua, b Jie Tanga Xuebo Lib Ping Qiana
Ruilin Shena Long Xua Tesheng Gaoa Nenghua Zhanga
Jian Houc
aDepartment of Pathology and Molecular Medicine Center, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, bKey Laboratory of Evidence-Identifying in Universities of Shandong, Shandong University of Political Science and Law, Jinan, cDepartment of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
Key Words
miR221 • Placenta • DDIT4 • Target genes
Abstract
Background/Aims: miR221 might have an important role in human embryo development. However, little is known about the function of miR221 in the human embryo. The aim of this study was to evaluate miR221 expression in human placental tissue, and to analyze the relationship between miR221 and target genes. Methods: The human placentas tissue samples were collected from healthy pregnant women who were willing to terminate their pregnancy. The total RNA isolation and microRNA reverse transcription quantification were performed by TaqMan microRNA assay and qRT-PCR. Results: The results showed that miR221 expression was significantly higher in 55- to 71-day placenta (mean value=0.1049) than that in 38- to 54- day (the mean value=0.0133) (p<0.001). MiR221 targeting genes, such as PIK3R1, CDKN1B, CDKN1C, DDIT4, and FOS, were detected in human placenta tissue, but only DDIT4 was significantly decreased with development (mean value: 0.0101 for 38~54 days, 0.0021 for 55~71 days, p<0.001). Further analysis showed that only DDIT4 was negatively correlated with miR221 expression (DDIT4: r=-0.396, p=0.033; PI3KR: r=0.322, p=0.089; CDKN1B: r=0.298, p=0.128; CDKN1C: r=0.198, p=0.304; FOS: r=0.171, p=0.347). Conclusion: These findings indicate that miR221 might play an important role in human placental development by precisely regulating the DDIT4 expression.
Introduction
1
He L, Hannon GJ: MicroRNAs: small RNAs with a big role in gene regulation.
Nat Rev Genet 2004;5:522-531. |
|
|
|
2
Pillai RS: MicroRNA function: multiple mechanisms for a tiny RNA? RNA
2005;11:1753-1761. |
|
|
|
3
Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R: Control of translation and
mRNA degradation by miRNAs and siRNAs. Genes Dev 2006;20:515-524. |
|
|
|
4
Zheng Y, Zhou J, Li X, Xu G, Jin M, Shen R, Su R, Zhan S, Ding B, Jia M, Cui
Y, Yu X: miR-382 Promotes Differentiation of Rat Liver Progenitor Cell
WB-F344 by Targeting Ezh2. Cell Physiol Biochem 2018;48:2389-2398. |
|
|
|
5
Jafari Ghods F, Topal Sarikaya A, Arda N, Hamuryudan V: MiRNA and mRNA
Profiling in Systemic Lupus Reveals a Novel Set of Cytokine - Related miRNAs
and their Target Genes in Cases With and Without Renal Involvement. Kidney
Blood Press Res 2017;42:1322-1337. |
|
|
|
6
Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A,
Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z: Identification of
hundreds of conserved and nonconserved human microRNAs. Nat Genet
2005;37:766-770. |
|
|
|
7
Berezikov E, Plasterk RH: Camels and zebrafish, viruses and cancer: a
microRNA update. Hum Mol Genet 2005;14:R183-R190. |
|
|
|
8
Legendre M, Lambert A, Gautheret D: Profile-based detection of microRNA
precursors in animal genomes. Bioinformatics 2005;21:841-845. |
|
|
|
9
Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES,
Kellis M: Systematic discovery of regulatory motifs in human promoters and 3'
UTRs by comparison of several mammals. Nature 2005;434:338-345. |
|
|
|
10
Stefani G, Slack FJ: Small non-coding RNAs in animal development. Nat Rev Mol
Cell Biol 2008;9:219-230. |
|
|
|
11
Zou XY, Yu Y, Lin S, Zhong L, Sun J, Zhang G, Zhu Y: Comprehensive miRNA
Analysis of Human Umbilical Cord-Derived Mesenchymal Stromal Cells and
Extracellular Vesicles. Kidney Blood Press Res 2018;43:152-161. |
|
|
|
12
Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de
Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH: MicroRNA expression in
zebrafish embryonic development. Science 2005;309:310-311. |
|
|
|
13
Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F, Lulli
V, Morsilli O, Santoro S, Valtieri M, Calin GA, Liu CG, Sorrentino A, Croce
CM, Peschle C: MicroRNAs 221 and 222 inhibit normal erythropoiesis and
erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad
Sci U S A 2005;102:18081-18086. |
|
|
|
14
Yuan Q, Loya K, Rani B, Mobus S, Balakrishnan A, Lamle J, Cathomen T, Vogel
A, Manns MP, Ott M, Cantz T, Sharma AD: MicroRNA-221 overexpression
accelerates hepatocyte proliferation during liver regeneration. Hepatology
2013;57:299-310. |
|
|
|
15
Jia QW, Chen ZH, Ding XQ, Liu JY, Ge PC, An FH, Li LH, Wang LS, Ma WZ, Yang
ZJ, Jia EZ: Predictive Effects of Circulating miR-221, miR-130a and miR-155
for Coronary Heart Disease: A Multi-Ethnic Study in China. Cell Physiol
Biochem 2017;42:808-823. |
|
|
|
16
Coan PM, Ferguson-Smith AC, Burton GJ: Ultrastructural changes in the
interhaemal membrane and junctional zone of the murine chorioallantoic
placenta across gestation. J Anat 2005;207:783-796. |
|
|
|
17
Cross JC: Genetic insights into trophoblast differentiation and placental
morphogenesis. Semin Cell Dev Biol 2000;11:105-113. |
|
|
|
18
Rossant J, Cross JC: Placental development: lessons from mouse mutants. Nat
Rev Genet 2001;2:538-548. |
|
|
|
19
Simmons DG, Cross JC: Determinants of trophoblast lineage and cell subtype
specification in the mouse placenta. Dev Biol 2005;284:12-24. |
|
|
|
20
Hu B, Wu T, Zhao Y, Xu G, Shen R, Chen G: Physiological Signatures of Dual
Embryonic Origins in Mouse Skull Vault. Cell Physiol Biochem
2017;43:2525-2534. |
|
|
|
21
Wu T, Chen G, Tian F, Liu HX: Contribution of cranial neural crest cells to
mouse skull development. Int J Dev Biol 2017;61:495-503. |
|
|
|
22
Noren Hooten N, Abdelmohsen K, Gorospe M, Ejiogu N, Zonderman AB, Evans MK:
microRNA expression patterns reveal differential expression of target genes
with age. PLoS One 2010;5:e10724. |
|
|
|
23
Pineau P, Volinia S, McJunkin K, Marchio A, Battiston C, Terris B, Mazzaferro
V, Lowe SW, Croce CM, Dejean A: miR-221 overexpression contributes to liver
tumorigenesis. Proc Natl Acad Sci U S A 2010;107:264-269. |
|
|
|
24
Felicetti F, Errico MC, Bottero L, Segnalini P, Stoppacciaro A, Biffoni M,
Felli N, Mattia G, Petrini M, Colombo MP, Peschle C, Care A: The
promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls
melanoma progression through multiple oncogenic mechanisms. Cancer Res
2008;68:2745-2754. |
|
|
|
25
Medina R, Zaidi SK, Liu CG, Stein JL, van Wijnen AJ, Croce CM, Stein GS:
MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer
Res 2008;68:2773-2780. |
|
|
|
26
Ichimura A, Ruike Y, Terasawa K, Shimizu K, Tsujimoto G: MicroRNA-34a
inhibits cell proliferation by repressing mitogen-activated protein kinase
kinase 1 during megakaryocytic differentiation of K562 cells. Mol Pharmacol
2010;77:1016-1024. |
|
|
|
27
Yang W, Yang Y, Xia L, Yang Y, Wang F, Song M, Chen X, Liu J, Song Y, Zhao Y,
Yang C: miR-221 Promotes Capan-2 Pancreatic Ductal Adenocarcinoma Cells
Proliferation by Targeting PTEN-Akt. Cell Physiol Biochem 2016;38:2366-2374. |
|
|
|
28
Grey W, Izatt L, Sahraoui W, Ng YM, Ogilvie C, Hulse A, Tse E, Holic R, Yu V:
Deficiency of the cyclin-dependent kinase inhibitor, CDKN1B, results in
overgrowth and neurodevelopmental delay. Hum Mutat 2013;34:864-868. |
|
|
|
29
Andrews SC, Wood MD, Tunster SJ, Barton SC, Surani MA, John RM: Cdkn1c
(p57Kip2) is the major regulator of embryonic growth within its imprinted domain
on mouse distal chromosome 7. BMC Dev Biol 2007;7:53. |
|
|
|
30
Wang ZQ, Ovitt C, Grigoriadis AE, Mohle-Steinlein U, Ruther U, Wagner EF:
Bone and haematopoietic defects in mice lacking c-fos. Nature
1992;360:741-745. |
|
|
|
31
Sofer A, Lei K, Johannessen CM, Ellisen LW: Regulation of mTOR and cell
growth in response to energy stress by REDD1. Mol Cell Biol 2005;25:5834-5845. |
|
|
|
32
Malagelada C, Lopez-Toledano MA, Willett RT, Jin ZH, Shelanski ML, Greene LA:
RTP801/REDD1 regulates the timing of cortical neurogenesis and neuron
migration. J Neurosci 2011;31:3186-3196. |
|
|
|
33
Yuan TL, Choi HS, Matsui A, Benes C, Lifshits E, Luo J, Frangioni JV, Cantley
LC: Class 1A PI3K regulates vessel integrity during development and
tumorigenesis. Proc Natl Acad Sci U S A 2008;105:9739-9744. |
|
|
|
34
Chen CZ, Li L, Lodish HF, Bartel DP: MicroRNAs modulate hematopoietic lineage
differentiation. Science 2004;303:83-86. |
|
|
|
35
Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S,
Tuschl T, Rajewsky N, Rorsman P, Stoffel M: A pancreatic islet-specific
microRNA regulates insulin secretion. Nature 2004;432:226-230. |
|
|
|
36
Su Q, Li L, Zhao J, Sun Y, Yang H: miRNA Expression Profile of the Myocardial
Tissue of Pigs with Coronary Microembolization. Cell Physiol Biochem
2017;43:1012-1024. |
|
|
|
37 Chiofalo B, Lagana AS, Vaiarelli A, La Rosa VL, Rossetti D, Palmara V, Valenti G, Rapisarda AMC, Granese R, Sapia F, Triolo O, Vitale SG: Do miRNAs Play a Role in Fetal Growth Restriction? A Fresh Look to a Busy Corner. Biomed Res Int 2017;2017:6073167. |
|
|
|
38
Lycoudi A, Mavreli D, Mavrou A, Papantoniou N, Kolialexi A: miRNAs in
pregnancy-related complications. Expert Rev Mol Diagn 2015;15:999-1010. |
|
|
|
39
Lagana AS, Vitale SG, Sapia F, Valenti G, Corrado F, Padula F, Rapisarda AMC,
D'Anna R: miRNA expression for early diagnosis of preeclampsia onset: hope or
hype? J Matern Fetal Neonatal Med 2018;31:817-821. |
|
|
|
40 Cunningham F, Leveno KJ, Bloom S, Hauth JC, Rouse DJ, Spong CY: Williams Obstetrics, Fetal Growth and Development (Chapter 2.4), ed 23. New York, McGraw-Hill Professional Publishing, 2010. |
|
|
|
41
Cosar E, Mamillapalli R, Ersoy GS, Cho S, Seifer B, Taylor HS: Serum
microRNAs as diagnostic markers of endometriosis: a comprehensive array-based
analysis. Fertil Steril 2016;106:402-409. |
|
|
|
42
Karmon AE, Cardozo ER, Rueda BR, Styer AK: MicroRNAs in the development and pathobiology
of uterine leiomyomata: does evidence support future strategies for clinical
intervention? Hum Reprod Update 2014;20:670-687. |
|
|
|
43
Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K, Oliner JD,
McKeon F, Haber DA: REDD1, a developmentally regulated transcriptional target
of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell
2002;10:995-1005. |
|
|
|
44
Gangloff YG, Mueller M, Dann SG, Svoboda P, Sticker M, Spetz JF, Um SH, Brown
EJ, Cereghini S, Thomas G, Kozma SC: Disruption of the mouse mTOR gene leads
to early postimplantation lethality and prohibits embryonic stem cell
development. Mol Cell Biol 2004;24:9508-9516. |
|
|
|
45
Shiota C, Woo JT, Lindner J, Shelton KD, Magnuson MA: Multiallelic disruption
of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal
growth and viability. Dev Cell 2006;11:583-589. |