Supplemental Material

Myotube Protein Content Associates with Intracellular L-Glutamine Levels

Diogo Antonio Alves de Vasconcelos ${ }^{\text {a,b }}$ Pieter Giesbertz ${ }^{\text {c }}$ Gilson Masahiro Murata ${ }^{\text {a }}$
Diego Ribeiro de Souza ${ }^{\text {d }}$ Jarlei Fiamoncini ${ }^{e}$ Daniella Duque-Guimaraes ${ }^{\text {a,f }}$ Carol Góis Leandro ${ }^{\text {b }}$ Sandro Massao Hirabara ${ }^{\text {d }}$ Hannelore Daniel ${ }^{\text {c }}$ Rui Curia,d Tania Cristina Pithon-Curi ${ }^{\text {d }}$

${ }^{\text {a D D }}$ Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil, ${ }^{\text {b }}$ Post-graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitoria de Santo Antao, Brazil, ${ }^{\text {ºntritional Physiology, Technische Universität München, München, Germany, }}$ ${ }^{d}$ Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo, Brazil, ${ }^{e}$ FoRC - Food Research Center, Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil, ${ }^{\text {flnstitute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom }}$

Figure S1. High Correlation (blue) between L-glutamine or L-glutamate levels and intracellular contents (A) or uptake (B) of amino acids and products of amino acid metablism in $\mathrm{C}_{2} \mathrm{C}_{12}$ myotubes cultured in absence of glutamine (no addition and no addition plus glutamine synthase inhibitor) for 48 hours. C2C12 cells were cultivated in proliferation (DMEM low glucose -5.5 mM and 2 mM L-glutamine with 10% FBS for 2 days) and differentiation (DMEM low glucose 5.5 mM and 2 mM L-glutamine with 2% horse serum for 4 days) conditions. Cells differentiated to myotubes were treated with different L-glutamine concentrations in DMEM with low glucose (5.5 mM) and 2% horse serum for 2 days. Figures refer to the following amino acids: alanine (Ala), arginine (Arg), asparagine (Asn), aspartate (Asp), β aminoisobutyric acid (bAib), carnosine (Car), glutamine (Gln), glutamate (Glu), glycine (Gly), histidine (His), isoleucine (lle), leucine (Leu), lysine (Lys), methionine (Met), ornithine (Orn), o-phosphoethanolamine (PEtN), phenylalanine (Phe), proline (Pro), serine (Ser), taurine (Tau), threonine (Thr), triptophan (Trp), tyrosine (Tyr) and valine (Val). Results were analyzed using Pearson correlation.

B

Figure S2. Membranes and blots of Western Blotting results. Ponceau S staining of nitrocellulose membranes after protein transfer from 12% polyacrylamide gels (A); Blots of p-Akt, (B) p-RPS6 (C) and p-4E-BP1 (D) contents in in $\mathrm{C}_{2} \mathrm{C}_{12}$ myotubes cultivated in various glutamine concentration conditions (no addition or 2,8 or 16 mM glutamine) for 48 hours stimulated with insulin $(100 \mathrm{nM})$ in the last hour.

A

B p-Akt

C p-RP-S6

D p-4EBP1

