Supplemental Material

Myotube Protein Content Associates with Intracellular L-Glutamine Levels

Diogo Antonio Alves de Vasconcelos^{a,b} Pieter Giesbertz^c Gilson Masahiro Murata^a Diego Ribeiro de Souza^d Jarlei Fiamoncini^e Daniella Duque-Guimaraes^{a,f} Carol Góis Leandro^b Sandro Massao Hirabara^d Hannelore Daniel^c Rui Curi^{a,d} Tania Cristina Pithon-Curi^d

^aDepartment of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil,
^bPost-graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco,
Vitoria de Santo Antao, Brazil, ^cNutritional Physiology, Technische Universität München, München, Germany,
^dInterdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo, Brazil, ^eFoRC – Food
Research Center, Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of
Sao Paulo, Sao Paulo, Brazil, ^fInstitute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom

Figure S1. High Correlation (blue) between L-glutamine or L-glutamate levels and intracellular contents (A) or uptake (B) of amino acids and products of amino acid metablism in C₂C₁₂ myotubes cultured in absence of glutamine (no addition and no addition plus glutamine synthase inhibitor) for 48 hours. C2C12 cells were cultivated in proliferation (DMEM low glucose -5.5 mM and 2 mM L-glutamine with 10% FBS for 2 days) and differentiation (DMEM low glucose – 5.5 mM and 2 mM L-glutamine with 2% horse serum for 4 days) conditions. Cells differentiated to myotubes were treated with different L-glutamine concentrations in DMEM with low glucose (5.5 mM) and 2% horse serum for 2 days. Figures refer to the following amino acids: alanine (Ala), arginine (Arg), asparagine (Asn), aspartate (Asp), β-aminoisobutyric acid (bAib), carnosine (Car), glutamine (Gln), glutamate (Glu), glycine (Gly), histidine (His), isoleucine (lle), leucine (Leu), lysine (Lys), methionine (Met), ornithine (Orn), o-phosphoethanolamine (PEtN), phenylalanine (Phe), proline (Pro), serine (Ser), taurine (Tau), threonine (Thr), triptophan (Trp), tyrosine (Tyr) and valine (Val). Results were analyzed using Pearson correlation.

В

Figure S2. Membranes and blots of Western Blotting results. Ponceau S staining of nitrocellulose membranes after protein transfer from 12% polyacrylamide gels (A); Blots of p-Akt, (B) p-RPS6 (C) and p-4E-BP1 (D) contents in in C_2C_{12} myotubes cultivated in various glutamine concentration conditions (no addition or 2, 8 or 16 mM glutamine) for 48 hours stimulated with insulin (100nM) in the last hour.

Α

B p-Akt

C p-RP-S6

D p-4EBP1

