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Abstract
Background/Aims: Pre-mRNA splicing is an essential step in eukaryotic gene expression 
regulation. Genes are composed of exons that remain in the mature mRNAs and intervening 
sequences named introns. Splicing is the removal of introns and ligation of exons in a mature 
transcript. Splice site or spliceosome component mutations can lead to different diseases, 
including neurodegenerative diseases and several cancer types. HuR is an RNA-binding protein 
that preferentially binds to U- and AU-rich elements, usually found at the 3′ UTRs of some 
mRNAs. We previously observed HuR specifically associated with spliceosomes assembled 
on introns containing miR-18a and miR-19a. miR-18a and miR-19a are components of the 
intronic miR-17-92 cluster, along with other five miRNAs. This cluster has been reported to 
regulate proliferation, migration, and angiogenesis in cells. In this context, we reasoned HuR 
could be controlling the splicing and processing of these miRNAs, leading to altered cellular 
phenotypes. Methods: We induced HuR overexpression in BCPAP and HEK-293T and analyzed 
the expression of miRNAs using qPCR, as well as the phenotypic effects in those cells. Cell 
counting to analyze cell growth was performed after trypan blue staining. Migration and 
invasion assays were performed using transwell filters and cells were counted after staining 
with crystal violet. We knocked down HuR using a specific siRNA and analyzed expression of 
miRNAs by qPCR, as well as cellular kinetics. Results: Our results revealed HuR is associated with 
miR-19a in BCPAP and HEK-293T cells. Conversely, silencing HuR led to reduced miR-17-5p 
and miR-19a in BCPAP cells. Our data support that HuR stimulates the expression of miR-19, 
which is further processed and capable of finding its target sequence in a reporter plasmid. 
Cells overexpressing HuR showed increased cellular proliferation, migration, and invasion rates. 
Notably, under the presence of antimiR-19a, BCPAP-HuR cells showed reduced cell growth. 
Taken together, these results indicate the molecular alterations observed are associated 
with upregulation of miR-19a, leading to cellular processes involved in cancer development. 
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Conclusion: Our findings propose a connection between HuR, miRNA biogenesis and cellular 
modifications. HuR stimulates miR-19a and miR-19b expression, which leads to up-regulation 
of cell proliferation, migration and invasion, promoting cancer development.

Introduction

Human genes are composed of exons and intervening sequences called introns removed 
during nuclear processing steps. Pre-mRNA splicing is an essential step in eukaryotic gene 
expression and consists of removing introns and joining exons, resulting in mature mRNAs 
transcripts [1]. Splicing regulation is dependent on transcript sequences and regulatory 
proteins recruited by the spliceosome. Interaction between regulatory sequences found 
across the pre-mRNAs and regulatory proteins defines splicing fate. Additionally, mutations 
in spliceosome components and splice sites are among the most significant causes of cancer 
development [2]. More than 70% of the miRNAs are transcribed from introns in the human 
genome [3, 4]. MicroRNAs (miRNAs) are small non-coding RNAs (20–25 nucleotides) that 
directly affect gene expression through mediating transcript stability in eukaryotes. miRNAs 
were described as part of the oncogenic suppressor’s network on tumorigenesis [5, 6]. 
The oncogenic miRNA cluster miRNA-17-92 is transcribed from intron 3 of MIR17HG gene, 
located on chromosome 13q31. Seven miRNAs are transcribed as a polycistron, miR17-5p, 
miR17-3p, miR-18a, miR-19a, miR-20a, miR-19b, and miR-92a-1. Changes in these miRNAs’ 
expression patterns have been associated with the development of leukemia, ovarian, lung, 
and thyroid cancer [7, 8].

The miRNAs transcribed from the miR-17-92 cluster miRNAs can perform distinct 
functions. For example, miR-19a and miR-19b are responsible for the oncogenic and anti-
apoptotic effects observed in many lymphomas [8]. Despite being transcribed as a single 
polycistron, these miRNAs’ processing, maturation, and function are independent [9, 10]. 
Additionally, individual miRNAs might have variable oncogenic features in different cell 
types [11, 12].

In papillary thyroid cancer, activation of the mutated BRAFV600E oncogene results in 
the deregulation of miR-17-92 expression [7]. Among the different targets predicted for miR-
17-92 cluster are the receiver (TGFBR1) and the transducer mRNAs (SMAD2, SMAD3 and 
SMAD4) present in the TGFβ signaling pathway, an essential track in thyroid cell mitogen 
activation [13-15]. Regulation of transcription of this cluster might also be related to 
c-MYC and E2F factors [16]. Indeed, the silencing of Pim-1 and E2F3, controlled by c-MYC 
and E2F, respectively, can regulate the transcription of this cluster [16, 17]. The relative 
expression of individual miRNAs from this cluster is important for disease development, yet 
the mechanism that controls miR-17-92 biogenesis remains unknown. We previously found 
Human antigen R (HuR) in spliceosomes assembled from introns containing miR-18 and 
miR-19a [18]. Although it is not an integral component of the spliceosome, HuR is associated 
with splicing proteins and the RNA interference machinery, such as the Argonaute proteins 
[19]. It is also engaged in miRNA processing steps [20].

HuR, also known as embryonic lethal abnormal vision-like 1 (ELAVL1), is a ubiquitously 
expressed RNA-binding protein (RBP) composed of three RNA recognition motifs (RRMs) 
[21, 22]. Approximately 90% of endogenous HuR is concentrated in the nucleus, where it 
has a role in RNA processing, especially in polyadenylation and splicing [21-24]. HuR is 
overexpressed in many cancer types and has been implicated in regulating the cell cycle, 
tumorigenesis (cell proliferation, migration, and invasion), immunity, and angiogenesis 
[24-28]. Silencing HuR using RNAi reduced proliferation, migration, and invasion of ovarian 
tumor cells [29]. In addition, HuR has been related to the regulation of vascular endothelial 
growth factor A (VEGFA) expression and angiogenesis [30], also being associated with the 
inflammatory process in human macrophages [31]. Previous studies reported that HuR 
could either control the target sites on the 3’UTR of its own mRNA or compete with miRNAs 
to bind the 3’UTR of other targets [30, 32, 33].

© 2022 The Author(s). Published by 
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We hypothesized that HuR could associate with miRNAs of this cluster and participate on 
the processing steps of this intron, therefore controlling miRNA biogenesis and maturation. 
As a consequence, it would be a key regulator of tumorigenesis processes triggered by these 
miRNAs. To address that, we investigated the biogenesis and maturation of these miRNAs 
in papillary thyroid cancer cell line (BCPAP) under altered expression of HuR. Importantly, 
we observed HuR associates and affects the expression of miR-19a and miR-19b. We also 
confirmed phenotypic alterations in cells over-expressing this protein, indicating a possible 
role in thyroid cancer development.

Materials and Methods

Cell culture
HeLa-Cre, HEK-293T, and papillary thyroid cancer (BCPAP) cell lines were maintained in DMEM/high-

glucose (Thermo Fisher Scientific) supplemented with 10% FBS (HyClone), 1 mM sodium pyruvate (Life 
Technologies), L-glutamine, and 1X penicillin-streptomycin (100 U/mL penicillin, 100 μg/mL streptomycin; 
Life Technologies) in 60 mm Petri dishes, unless otherwise indicated. Adherent cells were detached using 
1X trypsin/EDTA (Life Technologies). Cells were cultured at 37 °C in a humidified, controlled atmosphere 
incubator (95% air, 5% CO2). According to the manufacturer’s instructions, transfections were performed 
with Lipofectamine 2000 (Life Technologies). HeLa-Cre was kindly provided by E. Makeyev [34], and BCPAP 
was kindly provided by Massimo Santoro (University “Federico II”, Naples, Italy). Transfection selection was 
performed by gradually increasing geneticin (G418, Sigma) concentration to 1000 µg/mL, generating stably 
transfected cells. Cells were maintained in geneticin at 200 µg/mL.

microRNA quantification (qRT-PCR) and TaqMan-Based PCR
Whole-cell extracts were prepared using buffer A (10 mM KCl, 1.5 mM MgCl2, 20 mM HEPES [pH 7.5], 

0.5 mM DTT) and the Douncer homogenizer (Wheaton, NJ). RNA was extracted using Trizol reagent (Thermo 
Fisher Scientific) and precipitated with sodium acetate and ethanol. According to the manufacturer’s 
instructions, this material was used for cDNA synthesis using Superscript IV RT enzyme (Life Technologies) 
and random primers. 100 ng of these cDNAs were used in real-time RT-PCR reactions (qRT-PCR) using SYBR 
Green reagent (Thermo Fisher Scientific) and specific primers for miRNAs 17a, 18a, 19a and 92a, RNU6B, 
HuR, and b-actin (Supplementary Table S1 – for all supplementary material see www.cellphysiolbiochem.
com). TaqMan analyses were performed using 200 nM of probes for hsa-miR-19a, hsa-miR-19b, hsa-miR-18, 
and hsa-miR-423 (Thermo Fisher Scientific) (Supplementary Table S1). The probes for hsa-miR-423 were 
used as endogenous control, as recommended by Thermo. TaqMan universal master mix (ThermoFisher 
Scientific) was used according to manufacturer’s instructions, and ~100 ng DNA, in a total volume of 15 μl 
were run with the following cycling conditions: 16 °C for 30 min, 42 °C for 30 min, 85 °C for 5 min. Expression 
of specific miRNAs were normalized with U6 small nuclear RNA (RNU6B) when using SYBR Green or hsa-
miR-423 when using the TaqMan probe system. The fold change calculation was performed using the delta-
delta Ct (2-ΔΔCt) method [35].

Immunoprecipitation
pFLAG-HuR was transfected into HEK-293T and BCPAP cells. As controls, empty pFLAG and 

untransfected cells were used. Cells were collected, and extracts were prepared as described above. These 
extracts were immunoprecipitated by incubation with protein A-Sepharose coupled to anti-FLAG M2 
(Sigma) for 16 to 18 h at 4 °C. After incubation, the resin was extensively washed in RIPA buffer (20 mM Tris 
[pH 8.0], 150 mM of NaCl; 10% glycerol, 2 mM EDTA; 2 mM EGTA, 1% Triton X-100) and the proteins were 
eluted using 5 µg/µl FLAG peptide for 2 h under rotation. Input and elution fractions were subjected to RNA 
extraction and qRT-PCR analysis, as described.

Luciferase reporter assay
To develop the luciferase reporter assay, three plasmids were created. We inserted pri-miR-17-92 

sequence into the XhoI/EcoRI sites of the pRD-RIPE intron (kindly provided by Dr. E. Makeyev, Nanyang 
Technological University, Singapore; [34]), creating pRD-RIPE-1792. This plasmid has a tetracycline-
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controlled promoter, which is reversibly turned on or off by the presence of the antibiotic doxycycline. The 
luciferase reporter plasmid and the “scramble” control were generated using pmir-GLO (Promega). miRbase 
and TargetScan predicted RAP-IB 3’UTR as a target of miR-19a and miR-19b. Full length (380 bp) and 
scrambled (318 bp) sequences of human RAP-IB mRNA 3’-UTR were subcloned downstream into pmir-GLO 
at XhoI/XbaI sites, generating pmirGLO-RAP-IB-3ʹ-UTR (Luc-RAP-IB-3’-UTR) and pmirGLO-scrambled-3ʹ-
UTR (Luc-scrambled-3’-UTR) reporter constructs. The sequence and orientation of the luciferase reporter 
were verified by NotI cleavage and DNA sequencing. To perform the reporter assay, HeLa-Cre cells were 
co-transfected with pRD-RIPE-1792 (300 ng) and pCAGGS-Cre (Cre-encoding plasmid) (100 ng) (kindly 
provided by Dr. E. Makeyev, Nanyang Technological University, Singapore; [34]). Co-transfection was 
performed using confluent cells on a 24-well plate. These cells were incubated with a mixture containing 
2.0 μg of DNA and 1.25 μL Lipofectamine 2000 in 100 μL Opti-MEM I (Life Technologies, Carlsbad, CA) 
following the manufacturer’s protocol. Cells were incubated with the transfection mixtures overnight, the 
medium was replaced for DMEM, and the incubation continued for another 24 h before adding puromycin. 
These cells were then used for the transfection of the luciferase reporter plasmid. This was performed with 
50 ng/mL of each Luc-RAP-IB-3’-UTR and Luc-scrambled-3’-UTR, separately, using Lipofectamine 2000 
as recommended (Life Technologies, Carlsbad, CA). The medium was replaced 6-8 h post-transfection to 
include the mixture of penicillin and streptomycin, and the incubation continued for another 20 h in DMEM. 
The two luciferases’ activity was measured 48 h post-transfection using the Dual-Glo Luciferase Assay 
System (Promega).

Small Interfering RNA (siRNA) and antimiR-19a transfection
Silencer selected validated small interfering RNA (siRNA) for HuR (catalogue number 4390824) and 

negative control siRNA (catalogue number 4390843) were purchased from Life Technologies (Supplementary 
Table S1). To inhibit HuR expression, three different siRNA concentrations were transfected into BCPAP cells 
using Lipofectamine 2000 (2.5, 5, and 10 nM) (Life Technologies), following the manufacturer’s protocol. 
Cells were collected after 24 h and subjected to protein preparation and RNA extraction. 25 pM of antimiR-
19a (miRVana, Thermo catalogue number 4464084) and the negative control (mirVana, Thermo catalogue 
number 4464076) (Supplementary Table S1) were transfected into BCPAP-FLAG and BCPAP-HuR cells using 
Lipofectamine 2000 (Life Technologies) according to manufacturer’s protocol. Cell growth after 24h and 
72h post-transfection was evaluated using trypan blue.

Western Blot
Proteins were extracted using a buffer composed of 10 mM Tris-HCl pH 8, 140 mM NaCl, 0.1% SDS, 1% 

Triton X-100, 0.1% sodium deoxycholate, 1 mM EDTA, 0.5 mM EGTA, 1 mM PMSF and 1 mM DTT. Total protein 
concentrations were determined using the Bradford reagent (BioRad). Equal amounts of samples prepared 
from whole-cell extracts were separated on 10% SDS-PAGE, transferred to a nitrocellulose membrane, and 
probed with anti-HuR rabbit monoclonal (Cell Signaling) and anti-b-actin (Sigma). Following incubation 
with secondary antibodies IRDye 680/800CW-labeled rabbit or mouse (LI-COR Bioscience), blots were 
visualized using Odyssey CLx imaging system software (LI-COR Bioscience). Quantification was performed 
using Image J software and depicted after normalization of optic densitometry.

Cell growth, migration, and invasion
Cell growth was evaluated for 48 h with trypan blue staining. BCPAP cells at an initial concentration 

of 2.5 x 104/mL were cultured in 6-well plates (Corning) at 37 °C in 5% CO2 for 48 h. After cell suspension, 
a 0.4% trypan blue solution (Sigma Aldrich) was added in a 1:1 ratio. After 3 min, cells were counted and 
separated into live cells (no cytoplasmic fluorescence) and dead cells (blue cytoplasmic fluorescence). 
The trypan blue-positive ratio from 10 random fields was quantified with ImageJ software. Cells were 
counted using the Countess II FL (Life Technologies). Migration and invasion assays were performed using 
8.0 μm pore transwell membranes (Corning). Membranes were incubated with PBS for 1 h at 37 °C, 5 % 
CO2 atmosphere for migration assays. For invasion assays, membranes were coated with 25 μg Matrigel® 
(BD Biosciences) and incubated for 1 h at 37 °C, 5% CO2 atmosphere. For both assays, about 2.5 x 104/mL 
cells were suspended in a culture medium containing 1 % FBS and plated in the upper chamber, whereas 
the lower chamber had 10 % FBS supplemented media. Non-migrating cells were removed from the top 
chamber after 24h using a cotton swab. Migrating cells were fixed with 4 % paraformaldehyde (PFA) in 
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PBS and stained with 0.5 % Crystal Violet. Cells were photographed using a Nikon Eclipse E600 microscope 
equipped with optical camera CF160 epifluorescence, and ten representative fields were counted. Total 
protein concentrations were determined using the Bradford reagent.

Statistical analyses
Data are presented as mean ± SEM. Statistical analyses were performed using GraphPad Prism 

(GraphPad software, version 9, San Diego). Splicing reporter assay results and immunoprecipitation results 
were analyzed by two-way ANOVA followed by Tukey’s post-test to allow group comparison. Results of 
qPCR and Taqman experiments were further analyzed using the Mann-Whitney post-test. Differences at 
p-values <0.05 were considered to be significant.

Results

HuR overexpression in BCPAP and HEK-293T cells
We previously observed HuR in spliceosomes assembled upon introns containing miR-

18a and miR-19a [18]. To investigate whether HuR could modulate the expression of miR-
17-92 miRNAs in cancer cells, we induced HuR overexpression in vitro in two cell lines: 
human embryonic kidney (HEK-293T) and papillary thyroid cancer (BCPAP). BCPAP is a 
papillary thyroid cell line carrying the mutation BRAFV600E [7]. HEK-293T is derived from 
human embryonic kidney. Previous genomic analysis revealed HEK-293T has 7 copies of 
MIR17HG [36]. We reasoned that HuR regulatory roles on the expression of the miRNAs 
could be compared in these two cell lines. HuR overexpression in BCPAP and HEK-293T 
cells was confirmed by real-time PCR (Supplementary Fig. 1). We first analyzed miR-17-92 
individual levels after HuR overexpression. As a control, empty pFLAG was also transfected 
into these cells. BCPAP-HuR and HEK293T-HuR showed increased expression of miR-19a, 
suggesting this protein positively regulates miR-19a expression independently of the cell 
line. On the other hand, we observed reduced levels of miR-92a in both cell lines (Fig. 1). The 
evidence for the role of HuR on the regulation of these miRNAs is reinforced by the fact that 
multiple copies of this cluster are found in HEK-293T cells.

Fig. 1. Graphs representing qPCR analysis for expres-
sion of miR-17-92 cluster miRNAs in (A) HEK293T-
HuR and (B) BCPAP-HuR cells. Cells with FLAG epi-
tope (white bars) were used as controls. The y-axis 
represents the fold change of expression calculated 
after normalization with RNU6B. Error bars repre-
sent standard deviations calculated from three inde-
pendent measurements. *P<0.05.
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Our qPCR using HuR over-expressing cells and in silico analysis retrieved from miRbase 
and TargetScan databases using query search consistently revealed potential HuR binding 
sites along pre-miR-17-92 sequence (GUUU, AUGA, NNUUNNUUU). Specifically, pre-miR-19a 
and pre-miR-19b sequences show conserved HuR binding sites (Fig. 2), indicating a possible 
interaction with these regions of the cluster. To investigate the association of HuR with this 
region, we performed immunoprecipitation using HuR over-expressing cells. Whole-cell 
extracts from BCPAP-HuR, HEK293T-HuR, and controls (cells expressing only the epitope 
FLAG) were subjected to anti-FLAG immunoprecipitation, and input and elution fractions 
were analyzed using qPCR. With three biological replicates, we observed that levels of miR-
19a and miR-92a increased in BCPAP-HuR elution fractions relative to controls, indicating an 
association of those miRNAs and HuR (Fig. 3A). HuR associates with miR-19a in HEK293T-
HuR as well (Fig. 3B). Specifically, HuR is also associated with miR-18 in this cell line. With 
the use of Taqman probes, we also confirmed strong HuR association with hsa-miR-19a and 
hsa-miR19b in BCPAP (Fig. 3C) and in HEK-293T cells (Fig. 3D). Specific Taqman probes for 
hsa-miR18 also confirmed association with HuR in HEK-293T but not in BCPAP cells (Fig. 3C 
and 3D).

Fig. 2. In silico analysis of HuR bind-
ing sites on pre-miR-19a and pre-miR-
19b sequences. HuR binding consen-
sus sequences are marked on the pre-
miRNA sequences (red). The mature 
sequences for miR-19a and miR-19b 
are underlined in black. miRbase and 
TargetScan databases were used to 
search for consensus sequences.
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designed for qPCR using SYBR-Green 
were used in these experiments. The 
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normalizer and fold change was cal-
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controls. Taqman assays were per-
formed using probes for hsa-miR-19a, 
hsa-miR-19b and hsa-miR-18. Elution 
fractions of (C) BCPAP-HuR (black 
bars), BCPAP-FLAG (white bars) 
and (D) HEK293T-HuR (black bars), 
HEK293T-FLAG (white bars) were 
analyzed after normalization with the 
use of probe for hsa-miR-423. Error 
bars represent standard deviations 
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Knockdown of HuR affects the synthesis of miR-19a and miR-17-5p
Considering HuR was associated with miR-19a and miR-19b, we asked whether 

its absence would also interfere with the expression of these miRNAs in BCPAP cells. To 
reduce the levels of HuR, we transfected BCPAP cells with siRNA against HuR (siHuR). 
Concentrations as low as 5 nM led to reduced HuR mRNA and protein, as confirmed by qPCR 
and western blot against HuR (Supplementary Fig. 2). We then analyzed the expression of 
miRNAs in BCPAP-siHuR cells by qRT-PCR. Our results indicated that miR-17-5p and miR-19a 
levels decreased significantly in BCPAP-siHuR cells (Fig. 4). miR-18 and miR-92 remained 
unchanged after using siHuR in BCPAP cells. Therefore, the reduction observed in miR-19a 
might be primarily due to the strong association of HuR with miR-19a, as observed with the 
IP assay (Fig. 3). Additionally, we also observe a reduction in miR-17-5p upon knockdown of 
HuR. Since HuR can bind next to miR-17-5p coding region, it is possible that its absence also 
impacts the processing of this miRNA. This result indicates that HuR not only associates with 
miR-19a but also regulates the expression miR-19a and miR-17-5p. Thus, it is possible that 
HuR binding to the pre-miRNA facilitates the processing of the miRNAs transcribed from the 
5’-end of the cluster, such as miR-17-5p, miR-18 and miR-19a [37].

HuR induces miR-19 expression and maturation
Our results indicated that HuR binds to and regulates the expression of miR-19a and 

miR-19b in BCPAP cells. The connection of HuR expression and miR-17-92 cluster could 
point to a new mechanism governing the biogenesis of these miRNAs. To confirm that the 
induced miRNAs were truly functional, we designed an in vitro reporter system using a 
plasmid containing intronic pri-miR-17-92, whose expression is controlled by a tetracycline-
inducible promoter (Fig. 5A) [34]. Ras-related protein RAP-IB is a GTPase member of the 
Ras-associated protein family (RAS). Bioinformatics analysis revealed that RAP-IB 3’ UTR 
has target sequences for both miR-19a and miR-19b. Therefore, this sequence was inserted 
into pmiR-GLO to test for miR-19a and miR-19b activity. If the induced miRNA were correctly 
processed and functional in our assay, it would hybridize to the sequence cloned next to 
luciferase. Therefore, it would block luciferase translation, resulting in reduced luciferase 
activity. Under the absence of doxycycline, and therefore without activation of exogenous 
miR-17-92 expression, we observed endogenous miR-19a and/or miR-19b successfully found 
the target, resulting in reduced luciferase expression and activity (Luc-RAP-IB-3’UTR). The 
addition of FLAG-HuR coupled to doxycycline supplementation further reduced luciferase 
activity, indicating that more miR-19a and miR-19b were synthesized and able to find their 
target in pmiR-GLO-RAP-IB (Fig. 5B, Luc-RD-17-92-HuR). Altogether, these results support 
that induction by HuR generated functional miR-19a and miR-19b.

Fig. 4. miR-17-92 levels were assessed by qRT-
PCR after silencing HuR with 5 nM of siHuR 
(white bars). Transfection with “siRNA scrambled” 
was used as control (BCPAP-scrambled, black 
bars). The snRNA U6 was used as the normalizer 
(RNU6B). The y-axis represents the fold change of 
expression calculated after the normalization of 
Cts. *P<0.05.
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HuR overexpression is associated with tumor progression
Our results indicated that HuR positively controls miR-19a and miR-19b biogenesis and 

processing, and these miRNAs were already shown as potent oncogenic miRNAs [8]. We 
then hypothesized that increased expression of HuR could affect cellular kinetics promoting 
tumorigenic effects. To evaluate that, we analyzed cell growth, migration and invasion in 
cells over-expressing HuR. By comparing the phenotypes of BCPAP-HuR and BCPAP-FLAG; 
and HEK293T-HuR and HEK293T-FLAG, we observed increased growth in BCPAP-HuR and 
HEK293T-HuR cells (Fig. 6A and 6B), suggesting HuR is stimulating cell growth. We reasoned 
that HuR was stimulating miR-19a expression, which was the responsible for the increased 
cell growth observed. To address that, we transfected BCPAP-FLAG and BCPAP-HuR cells 
with antimiR-19a or with a negative control antimiRNA. Following 24h of the transfection, 
we confirmed miR-19a inhibition by qRT-PCR (Supplementary Fig. 3). We then analyzed cell 
growth for another 48h and compared it with the growth of BCPAP-HuR cells. The results 
showed inhibition of miR-19a has a significant impact on growth of these cells, especially 
when compared to BCPAP-HuR cells (P<0.0005) (Fig. 6C).

Sustained continuous proliferation is one hallmark of cancer [38], and this characteristic 
indicates that HuR over-expression could affect other tumorigenic aspects. We then sought 
to investigate migration and invasion rates in cells overexpressing HuR. Transwell migration 
assays were performed with approximately 2.5 x 104 cells/mL after incubation of 24 h in 
regular culture media containing FBS. Our results showed that BCPAP cells overexpressing 
HuR migrated faster than control cells. In addition, the number of cells counted on the lower 
chamber was, on average, 50% higher than the number found in control cells (Fig. 7A).

Similarly, we performed this assay using a matrigel layer over the transwell membrane, 
simulating the extracellular matrix environment. The number of HuR overexpressing cells 
that could invade the lower chamber was twice the number found for control cells (Fig. 7B). 
This result indicated that HuR over-expressing cells also had increased invasive capacity. 
Altogether, these results suggested that HuR over-expression increases tumorigenic 
characteristics in thyroid papillary cancer cell line. Indeed, miR-19a and miR-19b stimulation 
by HuR over-expression might directly involve these observed effects during tumor 
progression.

Fig. 5. Splicing reporter system. 
(A) Schematic representation of pRD-
RIPE-1792, with the pri-miRNA-1792 
inserted inside the intron and dox-
inducible promoter; below, the pmir-
GLO plasmid with RAP-IB 3’UTR tar-
get sequence (Luc-RAP-IB-3’UTR) 
and the control with the scrambled 
target sequence (scrambled-3’UTR). 
(B) HeLa-Cre cells were transiently 
co-transfected with reporter plasmids 
Luc-RAP-1B-3’-UTR, scrambled-3’UTR, 
pRD-RIPE-1792 (Luc-RD-1792-HuR), 
and pFLAG-HuR (Luc-HuR). Luciferase 
activity was quantified as described in 
methods and normalized after doxy-
cycline addition. Induction of pRD-
RIPE-1792 or HuR is indicated below 
the graph. Luciferase activities were 
analyzed as the relative activity of fire-
fly to Renilla luciferase. Data represent 
the mean ± SE of six biological repli-
cates. *P<0.05 ****P <0.0005.
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Fig. 7. HuR over-expression 
affects migration and invasion 
rates in BCPAP. Cells were fixed 
and stained with crystal violet 
and subsequently counted by 
optical microscopy after assays 
using the transwell. (A) Migra-
tion assays, the upper panel 
shows representative images of 
cells stained with crystal violet. 
The lower panel is a quantifica-
tion of 10 fields of untransfect-
ed BCPAP (gray), BCPAP-FLAG 
(white), and BCPAP-HuR cells 
(black). (B) Invasion assays, the 
upper panel shows representa-
tive images of cells stained with 
crystal violet. Lower panel is a 
quantification of 10 fields of un-
transfected BCPAP (gray), BC-
PAP-FLAG (white), and BCPAP-
HuR cells (black). Three biologi-
cal replicates were performed 
for each experiment, **P<0.005 
****P <0.0005.
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Fig. 6. Growth curves of (A) 
BCPAP and (B) HEK293T cells 
overexpressing HuR and the 
respective controls. Cells over-
expressing HuR (black lines) 
and the controls untransfected 
cells (red lines) and cells trans-
fected with empty pFLAG plas-
mid (blue lines) were analyzed 
for 48h using crystal violet 
staining. (C) Growth curves of 
BCPAP-FLAG and BCPAP-HuR 
after transfection with antimiR-
19a. BCPAP-FLAG antimiR-19a 
(blue line) and BCPAP-HuR 
antimiR-19a (green line) were 
analyzed after 24h of transfec-
tion throughout 48h. BCPAP-
HuR (black line) without anti-
miR-19a was used as control. 
Three biological replicates were 
performed for each experiment, 
**P<0.005; ***P<0.0005.
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Discussion

The ubiquitously expressed HuR protein is an RNA-binding protein already associated 
with several post-transcriptional regulatory mechanisms [26, 39, 40]. HuR bears RRM motifs, 
which are important to bind AU- and U-rich sequences on RNAs mediating their stabilization. 
This protein was found especially upregulated in different cancers, including papillary, 
follicular, and anaplastic thyroid cancers [39, 41]. We previously observed HuR associated 
with spliceosomes assembled upon introns containing miRNAs in papillary thyroid cells 
(BCPAP) [18]. In this paper, we investigated HuR association with intronic miRNAs as well 
as the molecular and cellular effects of this interaction. Our results contribute to unveil the 
mechanisms mediated by HuR to cause the cellular transformations that might develop 
cancer.

Although HuR is not an integral component of spliceosomes, we hypothesized it could 
be associated with intronic miRNA processing and maturation, therefore affecting the rate 
of synthesis and expression of these molecules. We first observed BCPAP and HEK-293T 
cells with increased HuR expression also show increased levels of miR-19a. On the other 
hand, we also observed reduced levels of miR-92a in both cells. This expression variation 
can be due to pri-miRNA secondary structure, which might hide miR-92a from processing 
in both cell lines tested [37, 42]. It is also possible that HuR may regulate the expression of 
the miRNAs from this cluster in a cell-specific manner. It is known that miR-19 expression 
promotes lymphoma, and the co-expression of miR-92 suppresses this oncogenic activity in 
mice. The expression ratio between these two miRNAs appears to be dynamically regulated 
during the lymphoma progression [37, 42].

Next, we confirmed HuR associates to intronic pre-miR-19a and pre-miR-19b sequences 
and increased the expression of these miRNAs. Both BCPAP and HEK-293T cells over-
expressing HuR showed increased expression of miR-19a, suggesting this protein positively 
regulates miR-19a expression independently of the cell line. Additionally, miR-19a and 
miR-19b associate with HuR in BCPAP cells. Importantly, by using a reporter system, we 
confirmed HuR induces expression and proper maturation of miR-19a and miR-19b. We 
interpret this result as a strong indicator that HuR is an important regulator of this miRNA 
cluster expression, specifically stimulating miR-19a and miR-19b expression. We then asked 
whether HuR reduction or absence would interfere with the expression of these miRNAs 
in BCPAP cells. Our results indicated that knockdown of HuR severely reduces miR-19a. 
Previous studies have shown that HuR is an essential protein for cell survival [43], possibly 
due to its association with proteins and miRNAs involved in cell cycle regulation and 
RNA stabilization. In fact, upon cellular perturbation, HuR translocates to the cytoplasm, 
targeting specific RNAs and with a primary role in RNA stabilization [27, 44]. It binds to the 
3’UTR of angiogenic factors such as VEGF-A, COX-2, TGF-β, and TNF-α [45, 46], regulating 
their stability and affecting cell cycle control. Some cancer-associated stressors, including 
lipopolysaccharides, chemical compounds, cytokines, and ultraviolet radiation, increase 
HuR total expression [47, 48], which might lead to the altered expression of oncogenic 
miRNAs, as confirmed by our results. In bladder cancer, cytoplasmic HuR levels were directly 
proportional to an increased malignant potential, tumor progression, and poor prognosis 
[49]. The results observed after HuR knockdown suggest the molecular mechanism related 
to this phenotype might be associated with the regulation of miR-19a/b expression.

Considering the important effects of HuR on mediating miR-19a and miR-19b expression, 
we reasoned it could be involved with modifications on the cellular phenotypes. To evaluate 
that, we analyzed cell growth, migration and invasion in cells over-expressing HuR. Our 
results suggested that cells over-expressing HuR increase tumorigenic characteristics 
in the thyroid papillary cancer cell line. In order to investigate the role of miR-19a on the 
altered cell growth, we used antimiR-19a in BCPAP-HuR and BCPAP-FLAG cells. Growth 
of cells transfected with antimiR-19a was slower than non-transfected cells (BCPAP-HuR) 
and control transfected cells (BCPAP-FLAG antimiR19). These results support our initial 
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hypothesis, indicating HuR effect on miR-19a is directly responsible for altered cell growth, 
which can lead to tumorigenic features. Indeed, miR-19a and miR-19b stimulation by HuR 
are directly involved with these observed effects during tumor progression. These results 
are consistent with previous analyses, which showed that HuR silencing in ovarian cancer 
cells reduced the proliferative profile and invasive migration rates [29]. The same phenotype 
was observed in lung cancer development, in which knockdown of HuR inhibited migration 
and invasion [50]. In anaplastic thyroid cancer, HuR silencing increased apoptosis and 
reduced cell viability [41]. It has been reported that HuR also increases the migration of 
vascular smooth muscle cells and bone marrow-derived mesenchymal stem cells (BMSCs) 
[33, 40]. This process can lead tumor cells to invade adjacent tissues, leading to metastasis 
by growing in a distant organ. Translocation of HuR from the nucleus to the cytoplasm might 
stabilize target mRNAs essential to promote migration and invasion processes in some types 
of cancer [51]. The mechanism of action in this process may also be related to the activity of 
cell cycle regulators mediated by HuR, like VEGF-A in cell proliferation [52], COX-2 and PTEN 
in cell migration [53, 54], cyclin A in cell invasion [51] and PI3K/AKT/NF-κB or METTL3/
ZMYM1/E-cadherin in anti-apoptotic capability [55, 56]. Cell cycle regulators such as PTEN, 
cyclin A2, cyclin D2, and TGFBR2 mRNAs have target sequences for miR-19a and miR-19b, 
suggesting that altered levels of these miRNAs might directly affect the kinetic processes 
regulated by these molecules. Additionally, HuR increases the stability of cyclin A, c-fos and 
cyclin E1 by binding to the 3’UTR of the respective mRNAs. HuR increases the mRNA stability 
of cyclin E1, leading to its overexpression in breast cancer [57, 58], and directly affecting cell 
proliferation.

HuR might also regulate the cell cycle by controlling HOTAIR long non-coding RNA 
expression. For example, in bladder cancer, this protein increases the expression of HOTAIR 
by directly binding to it [59]. On the other hand, knockdown of HuR or HOTAIR can inhibit 
bladder cancer cell migration, invasion, proliferation, and epithelial-mesenchymal transition 
(EMT), slowing down bladder cancer progression [59, 60]. Finally, HuR has been reported 
to bind directly to miRNAs, especially to miR-21, apparently acting as a miRNA sponge [61]. 
Consistent with all these roles, HuR has proved to be a molecular marker of cancer in various 
tumors [62-64].

Conclusion

Taken together, our results support a role for HuR in papillary thyroid cancer 
progression. Additionally, we propose that this modulation is related to increased miR-19a 
and miR-19b synthesis and maturation. We propose a model in which HuR overexpression 
triggers an interaction with the pre-miRNA and stimulates miR-19a and miR-19b biogenesis 
and maturation, directly affecting cell cycle regulatory pathways like proliferation, migration 
and invasion in cancer cells (Fig. 8). HuR knockdown led to decreased levels of these miRNAs. 
The inhibition of miR-19a resulted in slower growth of cells overexpressing HuR. Our 
findings improve the understanding of the functional regulatory role of HuR on miR-17-92 
cluster biogenesis. To conclude, we propose that HuR mediates cancer progression through 
the upregulation of HuR-targeted miRNAs miR-19a and miR-19b, which alter the aggressive 
oncogenic potential of cancer cells. We suggest that targeting miR-19a/b and/or HuR might 
be helpful to therapeutic strategies against tumorigenesis.
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