Supplementary Material

The Role of Exercise-Induced Reactive Oxygen Species (ROS) Hormesis in Aging: Friend or Foe

Ronny Lesmana^{a,b,c} Cynthia Parameswari^d Gabriela Fernanda Mandagi^d Julianne Fay Wahyudi^d Noah Jefferson Permana^d Putri Teesa Radhiyanti^a Julia Windi Gunadi^e

^aPhysiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia, ^bCenter of Excellence in Highter Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia, ^cBiological Activity Division, Central Laboratory, Universitas Padjadjaran, Bandung, Indonesia, ^dUndergraduate Medical Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia, ^cPhysiology Department, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia

No	Title	Method	Objective	Results	Reference
					s
1.	Ten weeks of	Clinical	(1) To determine the	Disease activity	[86]
	high-intensity	trial	efficacy of 10 weeks of	changes reduce ESR	
	interval walk		HIIT walking for	and joint swelling	
	training is		improving disease	(38%). Changes in	
	associated with		activity and aerobic	innate immunity	
	reduced disease		capacity in older (> 55	increase neutrophil	
	activity and		years) adults with low to	migration, phagocytosis	
	improved innate		moderate rheumatoid	capacity, and neutrophil	
	immune function		arthritis (RA) (2) To	ROS production	
	in older adults		assess the effects of		
	with rheumatoid		HIIT walking on		
	arthritis: a pilot		peripheral blood		
	study.		neutrophil and monocyte		
			antibacterial function		
			and systemic		
			inflammatory cytokine		
			concentrations		

SUPPLEMENTARY TABLE 1. Summary of Reports Included in The Article

2.	Rejuvenation of	Clinical	To determine if	(1) 10 weeks of HIIT	[6]
	Neutrophil	trial	neutrophil functions	improved glucose	
	Functions in		could be improved in	homeostasis and insulin	
	Association with		association with changes	sensitivity; fasting	
	Reduced Diabetes		in fitness and metabolic	glucose and insulin	
	Risk Following		parameter in older adults	concentrations were	
	Ten Weeks of		at risk for type 2	reduced by 6% and	
	Low-Volume		diabetes mellitus	14%, respectively,	
	High-Intensity		(T2DM) using ten weeks	resulting in lower	
	Interval Walking		of low-volume high-	insulin resistance and	
	in Older Adults		intensity interval	increased insulin	
	with Prediabetes -		exercise training (HIIT)	sensitivity. (2) HIIT	
	A Pilot Study			improved neutrophil	
				function, including	
				increased chemotactic	
				index, phagocytic	
				capacity, mitogen-	
				stimulated ROS	
				production, reduced	
				basal unstimulated ROS	
				production, increased	
				basal respiration, ATP	
				production, maximal	
				mitochondrial	
				respiration, bioenergetic	
				health index, and	
				mitochondrial	
				membrane potential,	
				and also a reduction in	
				proton leak.	
3.			(1) To test the		[8]
			hypothesis that RET	exercise intervention	
	and in vitro	trial		does not increase	
	skeletal muscle			skeletal muscle	
	oxidative capacity			oxidative capacity or	
	in older adults		whether RET reduces	reduce mitochondrial	
				ROS production in	
			production of ROS	older adults.	

4.	Lifelong physical	Controlled	To examine the effect of	Due to increased	[54]
'.	• • •			oxidative stress, NO	L~ 'J
	an age-related			bioavailability is	
	reduction in		acetylcysteine (NAC) on	•	
	arterial and		•••	systemic circulation and	
	skeletal muscle		1 1	the musculature of	
	nitric oxide			sedentary aging	
	bioavailability in		-	humans. Lifelong	
	humans.			physical activity	
	numans.			opposes this effect	
			•	within the trained	
				musculature and arterial	
			older lifelong endurance-		
			-	blood flow to	
			v	contracting muscle with	
				aging does not appear to	
				be related to changes in	
				NO bioavailability.	
5.	Effect of ubiquinol	Pondomiza	To evaluate the effect of		[87]
5.	-	d controlled		supplementation	[07]
			_	prevented exercise-	
	and oxidative		11	induced CoQ	
	stress indexes after			deprivation and	
	intense exercise in			decreased paraoxonase	
	young athletes			activity and was	
	young atmetes			associated with a	
				significant decrease in	
				cytosolic ROS. At the	
				same time,	
				mitochondrial	
				membrane potential and	
				oxidative DNA damage	
				remained unchanged.	
				remaineu unchangeu.	

6.	Acute	Randomize	To understand the roles	(1) MitoQ intake	[88]
	mitochondrial		of the vascular	significantly improved	[]
	antioxidant intake			brachial artery	
	improves		vivo by examining the	endothelial function and	
	endothelial		impacts of acute MitoQ	popliteal artery	
	function,		intake on endothelial	endothelial function (2)	
	antioxidant		function, BP, arterial	There were	
	enzyme activity,		stiffness, walking	improvements in the	
	and exercise		capacity, and oxygen	physical functional	
	tolerance in		utility capacity in	capacity in PAD	
	patients with		patients with PAD.	patients: significantly	
	peripheral artery			increased maximal	
	disease.			walking time, maximal	
				walking distance, and	
				delayed claudication.	
				(3) SOD concentration	
				significantly increased.	
				(4) No significant	
				changes in the oxygen	
				utility capacity	
				measurements of SpO ₂ ,	
				[HbO ₂], or [HHb]	
				during walking	
7.	Effect of C242T	Randomize	To investigate the effect	8	[26]
/.	Polymorphism in		of single-bout exhaustive		[20]
	the Gene	trial	exercise on redox state	induces the	
	Encoding the		biomarkers and	accumulation of a	
	NAD(P)H Oxidase		oxidative DNA damage		
	p22phox Subunit		based on the C242T	marker, temporary	
	and Aerobic		polymorphism in the	redox imbalance, and	
	Fitness Levels on		gene encoding NOXs	oxidative DNA damage	
	Redox State		subunit p22phox	(2) High aerobic fitness	
	Biomarkers and		(CYBA) and aerobic	and the presence of the	
	DNA Damage		fitness levels.	T allele potentially	
	Responses to			alleviate exercise-	
	Exhaustive			induced redox	
	Exercise: A			imbalance and DNA	
	Randomized Trial			damage while	
				simultaneously	
				facilitating rapid OS	
L				rational supra op	

				alleviation and restoration of damaged DNA during recovery after exercise.	
0	F (2)	.			51.03
			To evaluate ascorbic	0 0	[19]
			acid supplementation	before 30 min, cycling	
	supplementation on oxidative stress		before exercise support antioxidant defenses and	exercise increased	
				-	
	markers in healthy women following		its ability to prevent inflammation and	min post-exercise in plasma as shown in	
	a single bout of		muscle damage	FRAP assay. The study	
	exercise		following a single bout	also showed that	
	exercise		of moderate-intensity	cycling for 30 minutes	
			cycling exercise in	significantly increased	
			untrained healthy adults.	e .	
			jj	minutes post-exercise in	
				the placebo group. In	
				contrast, no significant	
				differences were found	
				in the AA group. Thus,	
				supplementing with AA	
				attenuated this effect.	

8.	Vitamin C and E	Randomize	To determine whether	(1) Vitamin C and E	[89]
	supplementation	d controlled	daily supplementation of	supplementation did	
	prevent some	trial	1 g vitamin C and 400	attenuate some of the	
	cellular		IU vitamin E (1) reduces	cellular adaptations in	
	adaptations to		skeletal muscle oxidative	skeletal muscle (TFAM	
	human endurance		stress and (2) attenuates	and SOD) following	
	training.		the increase in gene	four weeks of	
			expression of	endurance training (2)	
			mitochondrial biogenesis	vitamin C and E	
			markers following acute	supplementation did not	
			endurance exercise, and	attenuate skeletal	
			(3) $VO2_{peak}$ and the	muscle oxidative stress	
			mitochondrial and	or the increase in gene	
			antioxidant enzymes	expression of	
			following endurance	mitochondrial	
			training.	biogenesis markers	
			C	following acute exercise	
				in healthy young males.	
				(3) most of the skeletal	
				muscle adaptations	
				related to oxidative	
				capacity and the whole-	
				body adaptations to	
				endurance training such	
				as VO2 _{peak} and W _{max}	
				were not hampered by	
				vitamin C and E	
				supplementation	

9.	Oxidative stress	Clinical	(1) To determine the	(1) Ultra-endurance,	[90]
ĺ	assessment in			very prolonged (>4	L [,] ĭJ
	response to ultra-		plasma and erythrocytes,	• • • •	
	endurance			an increase in plasmatic	
	exercise: thiols			ROS production and	
	redox status and		antioxidant capacity, and	-	
	ROS production			perturbation of	
	according to the		markers concentration in	1	
	duration of a			status. Redox status of	
	competitive race		athletes according to the		
	competitive face			substantially	
			-	unchanged, suggesting	
				preservation of cellular	
			1	and tissue equilibrium.	
			different components of	-	
			=	appear to improve	
			•	performance during	
				endurance exercise.	
			antioxidant and/or thiol		
			redox status and ROS		
			production may predict		
			performance.		
10.	Avenanthramide		1	Long-term AVA	[91]
	supplementation			supplementation can (1)	L ⁻ ⁺ J
	**		• • • •	attenuate blood	
	eccentric exercise-			inflammation markers,	
	inflicted blood			(2) decrease ROS	
	inflammatory			generation and NFkB	
	markers in		T	activation, and (3)	
	women.			increase antioxidant	
				capacity during an	
				eccentric exercise bout.	
			(downhill running)		
L		l	×	1	

11. Effect of N- Randomize To assess the effects of (1) Novel hum	an in [92]
acetylcysteine d controlled exercise-induced ROS vivo data show	
infusion on trial on insulin action and attenuation of	
exercise-induced protein signaling in antioxidant inf	
modulation of humans. impaired IS 3 I	
insulin sensitivity exercise, which	
and signaling independently	
pathways in Akt-signaling	
human skeletal in skeletal mus	-
1 5	
p70S6K, which	
involved in pro	
translation reg	
was shown to b	
impaired by N.	
following insu	lin
stimulation.	2 52.03
12. Exercise during Randomize To assess the acute (1) Acute sessi	
hemodialysis does d controlled effect of intradialytic moderate-inter	•
not affect the trial exercise (IDE) on does not furthe	
phenotype or microparticle number increase prothr	
prothrombotic and phenotype and their microparticle r	
nature of ability to induce that occur duri	•
microparticles but endothelial cell reactive hemodialysis.	
1alters their pro- oxygen species (ROS) in proinflammato	
inflammatory vitro. responses to ex	
function. stimulate an ac	-
toward a circul	-
anti-inflammat	ory
environment,	
microparticle-i	
transient increa	
endothelial cel	l ROS in
vitro with IDE	may
indicate the po	tential for
a longer-term a	
a longer-term a inflammatory a	inti-

13.	Prior endurance exercise prevents postprandial lipaemia-induced increases in reactive oxygen species in circulating CD31+ cells.	clinical trial	•	 (1) High-fat meal induced significant oxidative stress (i.e., ROS production) in the CACs that expressed the cell surface protein CD31. (2) Prior endurance exercise could prevent the PPL- induced increases in 	[94]
			lipids, and gene expression.	intracellular ROS production in CD31+ cells	
14.	Infusion with the antioxidant N- acetylcysteine attenuates early adaptive responses to exercise in human skeletal muscle.	d controlled trial	MAPK pathways and expression of genes involved in stress– response (HSP70), inflammation (IL-6, monocyte chemotactic protein 1, MCP-1), antioxidant defense (MnSOD) and mitochondrial biogenesis (PGC-1a) in human skeletal muscle.	 (1) Exercise increased phosphorylation of JNK by 49 and 40% at 45 min and fatigue, respectively, and this was entirely blocked by infusion of NAC before and during exercise. JNK activation is associated with regulating genes in cell proliferation, apoptosis, inflammation, and DNA repair and thus plays a 	[95]

15.	Assessment of a Standardized ROS Production Profile in Humans by Electron Paramagnetic Resonance	trial	assessment by Electron Paramagnetic Resonance (EPR) coupled to a specific spin probe (CMH: 1-hydroxy-3- methoxycarbonyl- 2,2,5,5-	EPR detectable ex vivo formation in capillary	[96]
16.	the exercise-	d controlled trial	erdosteine on exercise- induced oxidative stress by measuring and comparing the release of pro-inflammatory	After the second 6MWT, the percentage change in ROS plasma levels and 8-isoprostane	[58]
17.	2	Clinical trial	To assess whether a single session of HIIT induces ROS-dependent RyR1 modifications.	A fragmentation of RyR1 linking high- intensity exercise and increased ROS levels, via a prolonged increase in resting cytosolic Ca2+, to altered gene transcription and muscle adaptations	[97]

18.	three different	d controlled trial	continuous training (MICT), high-intensity continuous training (HICT), and high- intensity interval training (HIIT) on markers of male reproduction, including seminal markers of oxidative stress and inflammation as well as semen quality and sperm DNA integrity in healthy human subjects.	inflammation and oxidative stress improved significantly (decrease) after 24 weeks of MICT, HICT,	[98]
19.	Exercise recovery increases skeletal muscle H2O2 emission and mitochondrial respiratory capacity following two weeks of limb immobilization.	trial	followed by two subsequent periods of restored physical activity, on mitochondrial H2O2 emissions in adult male skeletal muscle	Two weeks of immobilization increases mitochondrial H ₂ O ₂ emissions, but subsequent retraining periods of ambulatory recovery and resistance training also led to robust increases in mitochondrial H ₂ O ₂ emissions in skeletal muscle.	[99]
20.	A pilot study investigating reactive oxygen species production in capillary blood after a marathon and the influence of an antioxidant- rich beetroot juice	clinical trial	effects of ROS production and mtDNA damage in capillary blood after a marathon and; (2) to establish	ROS increased after a marathon as measured in capillary blood taken from the fingertip. Beetroot juice was unable to mitigate exercise induced-ROS	[100]

21	Effects of modest	Dandomiza	To tost the hymothesis	(1) Examples humanamia	[101]
21.				(1) Exercise hyperemia	[101]
	• •			following severe muscle	
			21	contraction and reactive	
	exercise		• 1	hyperemia are blunted	
	hyperemia and			by ROS. (2) Modest	
	reactive hyperemia			hyperoxia-induced by	
	in healthy young			breathing 40 % O2 acts	
	men			independently of ROS	
				to attenuate not only	
				post-contraction	
				hyperemia but also	
				reactive hyperemia by	
				decreasing the release	
				of O2-dependent	
				vasodilators.	
22.	Tomato juice	Controlled	To investigate the	Daily intake of tomato	[21]
	intake suppressed	clinical trial	protective effect of	juice, equal to 15 mg	
	serum		tomato juice intake	lycopene per day, for	
	concentration of 8-		towards ROS induced by	five weeks significantly	
	oxodG after		20 min of extensive	reduced the serum	
	extensive physical		physical exercise in	levels of 8-oxodG after	
	activity.		untrained individuals.	an extensive physical	
				exercise, suggesting that	
				tomato juice has a	
				potential antioxidant	
				effect and may reduce	
				the elevated level of	
				ROS induced by	
				oxidative stress.	
23.	More than dietary	Randomize	To evaluate separate and	Trained young horses	[20]
	selenium	d controlled	combined effects of	resulted in an adaptation	
	supplementation,	trial	training and dietary Se	that allows them	
	submaximal		level on blood and	prolonged exercise bout	
	exercise training		muscle antioxidant	and lessens muscle	
	improves		capacity and the extent	damage than their	
	antioxidant status		of exercise-induced	untrained counterparts.	
	and ameliorates		oxidative damage.	Elevated dietary Se	
	exercise-induced		•	showed a slight	
	oxidative damage			advantage in supporting	
	to skeletal muscle			various antioxidant	
		l			

	in young equine athletes.			systems during training and in response to prolonged exercise.	
24.	The Impact of Partial Vascular Occlusion on Oxidative Stress Markers during Resistance Exercise	d controlled trial	To examine the effects of partial vascular occlusion (PVO) on oxidative stress markers at these two different intensities of resistance exercise (low and moderate) and rest in young resistance-trained males.	PVO in the absence of exercise significantly increase oxidative stress markers protein carbonyls (PC) and glutathione status (2) The combination of	[102]

25		D 1	(1) $\mathbf{T}_{\mathbf{a}}$ improved to $\mathbf{A}_{\mathbf{a}}$	(1) 1	[102]
25.					[103]
	51		role of ROS in	vasoconstriction is	
			7 1	associated with	
	vasoconstriction in			increased production of	
	exercising skeletal			ROS. ROS could lead	
	muscle		0	to a decreased vascular	
			. ,	response by stimulating	
			0	vasoconstrictor	
			infusion of vitamin C on		
				Vitamin C	
			(FBF) responses to	administration showed a	
			exercise	restoration of FBF	
				during hyperoxic	
				exercise only in	
				participants in the group	
				with a reduction in FBF	
				of 20%	
26.	Effects of grape	Randomize	To evaluate the effects	Grape juice	[22]
	juice consumption	d controlled	of grape juice	consumption can (1)	
	on muscle fatigue	trial	consumption on the	increase antioxidant	
	and oxidative		oxidative stress and	capacity and decrease	
	stress in judo		muscle fatigue	lipid damage and DNA	
	athletes: a		parameters before and	at the pre-exercise time	
	randomized		after fighting simulations	and (2) increase upper	
	clinical trial		in judo athletes.	limb muscle strength in	
				the pre-exercise	
				protocol assessments.	
27.	High-intensity	Randomize	To determine if 24	24-weeks HIIT marked	[104]
	interval training	d controlled	weeks of HIIT is	improvements in	
	modulates male	trial	effective in improving	markers of seminal	
	factor infertility		markers of male	oxidative stress and	
	through anti-		reproductive function	inflammation, semen	
	inflammatory and		and performance.	parameters, sperm DNA	
	antioxidative			integrity, body	
	mechanisms in			composition measures,	
	infertile men: A			and VO ₂ max.	
	randomized				
	controlled trial.				
L	1	I			

28.	N-	Randomize	To determine the effects	(1) Acute oral NAC	[105]
	Acetylcysteine's	d controlled	of acute oral N-	supplementation	
	Attenuation of	trial	acetylcysteine (NAC)	prevents the	
	Fatigue After		supplementation on Yo-	deterioration in YIRT-	
	Repeated Bouts of		Yo Intermittent	L1 performance of	
	Intermittent		Recovery Test Level 1	repeated bouts of	
	Exercise: Practical		(YIRT-L1) performance	damaging intermittent	
	Implications for		after repeated bouts of	exercise (2) Plasma	
	Tournament		damaging intermittent	creatine kinase values	
	Situations		exercise.	increased significantly	
				over time and were	
				significantly more	
				significant in the NAC	
				group than in the	
				placebo group (3) NAC	
				induced mild	
				gastrointestinal side	
				effects	

29.	Change of walking	Clinical	To investigate changes	(1) A reduced	[106]
				inflammatory state	с J
	intermittent			might be achieved by	
	claudication:			regular walking	
	impact on		1	exercise, possibly in a	
	inflammation,		patients with intermittent		
	oxidative stress		1	proportionately to	
	and mononuclear		-	changes in walking	
	cells: a pilot study			distance (2) Patients	
	1 5		_	showed an increased	
				walking distance and	
				reduced ROS	
				production upon	
				stimulation with a	
				phorbol ester derivative	
				-Inflammatory markers	
				like fibrinogen, C-	
				reactive protein or	
				soluble TREM-1	
				(Triggering receptor	
				expressed on myeloid	
				cells) (sTREM-1)	
				decreased over the	
				observation period (3)	
				A close relation of	
				sTREM-1 with the	
				walking distance,	
				fibrinogen and ROS	
				production	
30.	1			Consumption of TH at	[107]
	-		postprandial response of		
	2		•	g/kg BW was protective	
	postprandial			against lipid	
	antioxidant			peroxidation and	
	activity and		1	oxidative stress.	
	oxidative stress in		low and high dosages of		
	female athletes: a		TH and determine the		
	pilot study		time-course effect that		
			could provide optimal		
			protection against		

		oxidative damage among female athletes.		
	d controlled trial	stress, vascular function, and physical performance.	rich in polyphenols acutely improved	[108]
e e	d controlled trial	can improve cycling performance, measured as time to complete an 8 km time trial.	exercise-induced increases in lipid peroxidation and	[109]

	trained male cyclists.				
	pilates on	d controlled trial	a Pilates protocol on variables indicative of metabolic control and oxidative stress in patients with Type 2 Diabetes Mellitus.	(1) A significant reduction in glycated hemoglobin and oxidative stress in the intervention group; however, there were no differences in fasting glucose and in the profile lipid, expressed by the total cholesterol, HDL, LDL, and triglycerides (2) A moderate positive correlation between oxidative stress and glycated hemoglobin	[110]
34.		trial	based lifestyle intervention on cellular aging in a healthy individual	12 weeks of Yoga and Meditation based lifestyle intervention (YMLI) reduced levels of 8-OH2dG, ROS, cortisol, and IL-6 and significantly increased levels of TAC, telomerase activity, β - endorphin, BDNF, and sirtuin-1	[111]