Supplemental Material

Acid-Sensitive Outwardly Rectifying Cl⁻ Current in OV2944 Mouse Ovarian Cancer Cells

Hajime Hirasawa^a Kayo Aoba^a Naofumi Miwa^a

^aDepartment of Physiology, Saitama Medical University, Moro-hongo 38, Moroyama-machi, Iruma-gun, Saitama, Japan

Used for experiments in	NaCl	KCl	Choline-Cl	TEA-Cl	Na ₂ SO ₄	Mannitol	pН	Osmolarity
	(mM)	(mM)	(mM)	(mM)	(mM)	(mM)		
Fig.1 and 2	150	4	—			_	4.5 - 7.3	Isotonic
Fig. 2A	_	4		_	120	_	4.5	Isotonic
Fig. 3 and Suppl. Fig. 2	120	4			—	60	7.3	Isotonic
Fig. 3 and Suppl. Fig. 2	120	4			—		7.3	Hypotonic
Fig. 3A		4			95–100	_	7.3	Hypotonic
Suppl. Fig. 1	120	4	30		—		7.3	Isotonic
Suppl. Fig. 1A	120	4		30	—		7.3	Isotonic
Suppl. Fig. 1B	120	34		_		_	7.3	Isotonic
Suppl. Fig. 2	120	4					4.5	Hypotonic

Supplementary Table 1. Composition of extracellular solutions. All solutions contained 2 mM CaCl₂, 1 mM MgCl₂, 10 mM HEPES and 10 mM glucose. Isotonic and hypotonic solution were adjusted to 320–330 and 260–275 mOsm/kg, respectively.

Supplementary Fig. 1. Sensitivity of membrane current in OV2944 cells to extracellular TEA and K⁺. **A.** Left: Current–voltage relationship of the membrane current recorded with KCl-based patch solution and the effect of extracellular TEA. Extracellular 30 mM choline-Cl was replaced with an equimolar concentration of TEA-Cl. Right: Summary of current densities at +100 and -100 mV in the control and TEA groups. **B.** Left: Current–voltage relationship of the membrane current recorded with a KCl-based patch solution and the effect of extracellular 30 mM choline-Cl was replaced with equimolar concentration of KCl. Right: Summary of current densities at +100 and -100 mV in control and high-[K⁺]_o. (Bar: mean ± SEM; Circles: individual data)

Supplementary Fig. 2. Additional activation of ASOR current during activation of hypotonicity-induced current **A.** Left: Current–voltage relationship of hypotonicity-induced current recorded using the voltage pulse protocol and current activation by pH 4.5 in hypotonic condition. Right: Summary of current density at +100 and -100 mV under hypotonic condition and at pH 4.5 under hypotonic conditions (background-subtracted current; Bar: mean ± SEM. **p* < 0.05. ns: non-significant; Circles: individual data). **B.** Effect of pH 4.5 on hypotonicity-induced current at +100 and -100 mV