Cellular Physiology and Biochemistry Published online: 24 October 2025

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

Accepted: 29 September 2025

© 2025 The Author(s) Published by Cell Physiol Biochem Press GmbH&Co. KG. Duesseldorf www.cellphysiolbiochem.com

This article is licensed under the Creative Commons Attribution 4.0 International License (CC BY). This means that any user shall be free to copy and redistribute the material in any medium or format, also for commercial purposes, provided proper credit is given to the Authors as well as the original publisher.

Review

B Cells at the Crossroads of Cardiovascular and Hematologic Disease: Paving the Way for Novel Immunomodulatory Therapies

Angeliki Choustoulaki^{a,b} Soumaya Ben-Aicha^c Despina Fotioud Alexandros Briasoulis^b Ourania Tsitsilonis^e Efstathios Kastritis^b Panagiota Efstathia Nikolaou^{a,b}

^aLaboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece, ^bDepartment of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece, ^cNational Health and Lung Institute, Imperial College London, London, UK, dDepartment of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens 11527 Athens, Greece, eSection of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 15784, Athens, Greece

Kev Words

Cardio-immunology • B cells • Immunoglobulins • B cell targeting therapies

Abstract

The interaction between the immune and cardiovascular systems is a growing field of investigation with bidirectional aspects. B cells are modulators of the adaptive and the innate immunity and they orchestrate bone marrow and spleen immune responses beyond infectious diseases. B cell regulation contributes to the pathophysiology of myocardial damage in several conditions including myocardial infarction, heart failure and atherosclerosis. In parallel, B cellderived hematological disorders are interlinked to cardiovascular complications, including thrombosis and immunoglobulin-related cardiotoxicity. The scope of this review is to summarize the function and role of B cells as important players in myocardial and vascular adaptations to injury and as mediators of cardiovascular adverse events in hematological disorders. The primary focus is to highlight the clinical and preclinical findings regarding B cell-targeted therapies and their positive or negative impact on the cardiovascular system. A deeper understanding of B cell subpopulations, functions, and secretome could lead to targeted therapeutic interventions for cardiovascular and hematologic diseases.

> © 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Cellular Physiology

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by and Biochemistry Published online: 24 October 2025 Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

1. Introduction

The adult human heart consists of a diverse population of roughly 5 billion cells which operate together within specialized tissue microenvironments (niches) to regulate each heartbeat [1, 2]. This intricate coordination is disrupted by conditions, including cardiovascular (CV) comorbidities, such as ischemic heart disease. Advances in single-cell technologies have uncovered the heterogeneity of lymphoid cell populations in both mice and humans, identifying distinct subsets with specialized functions. Previously underappreciated populations, including cardiac-resident or bone-derived hematopoietic stem cells (HSCs), mature B cells and plasma cells, can contribute to the development of heart diseases. Although, the role and function of each subset of the B lymphoid lineage remains to be fully elucidated, several data support their involvement in immune responses to myocardial injury and the increased risk of CV events observed in hematologic malignancies [3, 4].

This review focuses on the B and plasma cells bidirectional relationship with the CV system and is structured into four main sections. First, we provide an overview of the role and function of this lymphoid lineage from an immunological perspective. Next, we present a comprehensive summary of current findings regarding the involvement of B cells in the healthy and diseased myocardium. In the third section, we explore CV adverse events associated with hematologic malignancies. Finally, we examine existing pharmacological interventions targeting B cells and their effects on the CV system, aiming to suggest future directions for therapeutic strategies in both CV and hematologic diseases.

2. **Maturation and functions of B cells**

HSCs reside within the bone marrow and possess the capacity for self-renewal and multilineage differentiation, resulting in an approximate release of one trillion cells daily [5]. During lymphopoiesis, HSCs differentiate into common lymphoid progenitors (CLP), and lead to the origination of T and B cell lineages and natural killer cells [6]. HSCs mobilization is governed by interactions with stromal cells of the bone marrow niche, and signals such as macrophage colony-stimulating factor 1 (CSF1), granulocyte-macrophage colonystimulating factor (GM-CSF) and cytokines [7].

B cell development occurs along with immunoglobulin (Ig) gene rearrangements. Progenitor B cells initiate the combinatorial rearrangement of the heavy chain (HC) (V, D, and I gene segments in the H chain locus) to differentiate into precursor B cells that express immature B cell receptors (BCR) with a surrogate light chain (LC)[8]. Rearrangement of the LC genes (V and I gene segments in the L chain loci) leads to their differentiation to IgMexpressing immature B cells and to IgM+IgD+ mature resting B cells. Ig gene rearrangement is prone to defects resulting in the development of B cell malignancies, immunodeficiencies or autoimmunity. Immature B cells exit the bone marrow and undergo their final stages of development in the spleen to form mature B cells [9] which comprise of distinct cell subsets: follicular B cells, marginal zone (MZ) B cells and B1 cells [10].

Follicular B cells are the dominant subset and reside within lymphoid follicles of the spleen and lymph nodes. Due to their location in follicles adjacent to T cell zones, they mount T helper-dependent responses to antigens presented by follicular dendritic cells (DCs) [11]. Follicular B cells proliferate and differentiate into antibody producing plasma cells or enter germinal centers, where affinity maturation of the BCR occurs [12].

MZ B cells, by contrast, are strategically placed in the interface between the red and white pulp in the spleen to respond to blood-borne pathogens and antigens. Their activation threshold is lower than follicular B cells, allowing IgM production in the absence of cluster of differentiation 40 (CD40)-dependent signals from follicular T helper cells. MZ B cells express polyreactive BCRs -which resemble the broad recognition of molecular patterns of toll-like receptors (TLRs)- and high levels of TLRs (like DCs, macrophages and granulocytes), allowing them to initiate low-affinity antibody responses prior to the induction of high-

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822 © 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

affinity antibody production by conventional follicular B cells [10, 13]. In mice, expression of CD1d and CD21 on MZ B cells facilitates the recognition of lipid antigens [14, 15], leading to the production of lipid-specific antibodies.

B1 cells are located in coelomic cavities such as the peritoneum and the lungs. They are spontaneously producing natural IgM antibodies without depending on thymus activation [16]. IgM is the earliest type of membrane-associated Ig expressed during B-cell ontogeny, it circulates as pentamer and is 1-2 mg/ml in the human blood. Besides host defense, IgM removes apoptotic cells and oxidized lipids from the circulation [17].

Mature B cells upon BCR activation give rise to plasmablasts -transient, proliferating cells that secrete antibodies [12]-, while plasma cells represent the terminal differentiation state of B cells and are specialized in high-rate antibody secretion. They are well distinguished from other populations due to the membrane expression of Syndecan-1 (CD138) which can also bind to fibronectin, collagen and basic fibroblast growth factor [18].

While B cells are traditionally recognized as antibody-producing cells, it is now well established that they contribute to immune regulation through a variety of mechanisms. They secrete a wide range of cytokines affecting other immune cells [19]. B cells express high levels of major histocompatibility complex (MHC) class II molecules, acting as antigenpresenting cells [20]. They recognize antigens through the BCR, internalize and process them, and subsequently present derived peptides to CD4⁺ T cells, particularly within germinal centers [20, 21], a function that has also been recognized for MZ B cells in mice [11].

B cells shape immune responses through cytokine secretion, triggered by stimuli such as TLR activation and BCR engagement. These soluble mediators exert diverse effects: B cells enhance innate immunity through the production of interferon gamma (IFN-y), interleukin (IL)-6, and IL-17 [19]; promote CD4⁺ T-cell polarization; contribute to the development of lymphoid tissues through LTα1β2 [19]; mediate monocyte recruitment via C-C chemokine ligand 7 (CCL7) [22]: facilitate T-cell trafficking to inflamed tissues by secreting PEPITEM [23] and directly modulate T-cell function [24].

Conversely, certain B-cell subsets, referred to as regulatory B cells (Bregs), exert immunosuppressive functions. These cells secrete anti-inflammatory cytokines such as IL-10 contributing to immune tolerance and resolution of inflammation [19]. Bregs also promote regulatory T-cell (Treg) activity, preserve natural killer cell homeostasis, and suppress the pro-inflammatory activity of monocytes, DCs, and CD8⁺ T cells [25]. In mice, IL-10-producing Breg subsets include CD5*CD1dhi B (B10) cells, MZ B cells and their precursors, as well as plasmablasts and plasma cells [26]. In humans, comparatively fewer Breg subsets have been characterized among peripheral blood mononuclear cells (PBMCs). The immature CD19⁺CD24^{hi}CD38^{hi} B cell subset produces the highest levels of IL-10 along with plasmablasts, and plasma cells as in mice [26]. Their ontogeny is yet to be explored, but the balance of pro- and anti-inflammatory environments can account for the differentiation and expansion to regulatory rather than effector B cells.

Taken together, B cells originate from HSCs and undergo a stepwise developmental process initially in bone marrow and afterwards in secondary lymphoid organs, that ensures the generation of a diverse and functional BCR repertoire. Their maturation yields distinct subsets—follicular B cells, MZ B cells, and B1 cells—each occupying specialized anatomical niches and serving complementary roles in immune surveillance. Collectively, B cells are not only key producers of antibodies but also active participants in immune regulation through antigen presentation and cytokine secretion or by limiting excessive immune activation and promoting tolerance.

3. B cells in normal cardiovascular function and in disease

3.1 The presence and role of B cells in the healthy myocardium

Both B and T cells are part of the physiological immune cell landscape of the heart, even in the absence of disease in both humans and rodents [27]. By using single-cell and

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

single nucleus technologies, Litviňuková et al. detected myeloid and lymphoid cells in humans consisting of approximately 10% and 5% of cardiac cells in the atrial and the ventricular regions, respectively [28]. In the same study, 8 subpopulations of lymphoid cells were identified including B cells and plasma cells which were shown to interact with cardiomyocytes and fibroblasts, deducing paracrine circuits important for cardiac homeostasis [28]. Immunohistochemistry using antibodies against the markers CD3, CD20, and CD31 on post-mortem cardiac biopsies from individuals without underlying cardiac pathology, indicated that CD20⁺ B cells were present both in the interstitial (extravascular) and intravascular compartments, as well as across the myocardium and epicardium. The functional role of B cells in human heart is not fully understood, while gene expression analysis revealed that pathways related to "B-cell receptor signaling pathway," "Antigen processing and presentation," and "Cytokine-cytokine receptor interaction" were upregulated in cardiac B cells in comparison with peripheral B cells. Based on these, the authors hypothesized that B cells extravasate, degrade the extracellular matrix and crawl through the interstitial space where they communicate with other cells such as fibroblasts [29].

In a multi-omics approach, Kanemary et al. [30], identified cardiac plasma cells in the human epicardium in two niches; one enriched in lymphatic endothelial and immune cells, and in a fibroblast-rich niche. Gene expression analysis revealed that IgA and IgG expressing cells were distinctly localized, with IgA presence being pronounced in the subepicardial region [30]. Cardiac plasma cells expressed C-C chemokine receptor 2 (CCR2) and CXC chemokine receptor 4 (CXCR4) via which they can interact with endothelial cells, fibroblasts, and resident macrophages. Based on their transcriptome, plasma cells were predicted to interact with macrophages via B-cell activating factor (BAFF) receptors (BAFF-R). In the same study, endothelial, fibroblast and plasma cell interactions were mediated by transforming growth factor (TGF) signaling. These findings highlighted the important role of plasma cells in cardiac homeostasis, fibrosis and immune defense [30]. In parallel, Bermea et al. provided a functional explanation for the presence of B cells in the human heart [31]. They identified naïve B cells (i.e., B cells that have not been activated or encountered antigens) and plasma cells in the healthy heart which interacted with endothelial cells, fibroblasts, pericytes, and smooth muscle cells via non-canonical Wnt signaling and with other B cells, endothelial cells, and myeloid cells through PECAM1 homophilic interaction, probably participating in transmigration or survival [31]. In an integrated analysis of existing single-cell data, de Winter et al. identified the B cells subsets in the human heart, comprising B1 cells, naive B cells, plasma cells, memory B cells and Bregs, supporting the important role of B cells in cardiac homeostasis and immune tolerance [32].

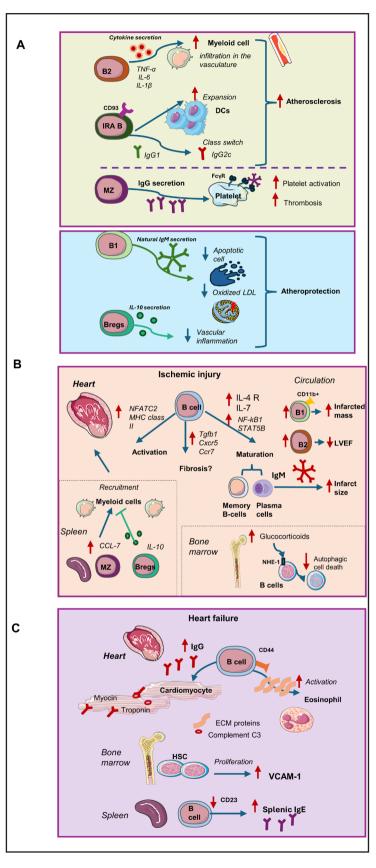
Novel omics-derived data from humans corroborate previous observations in murine hearts, showing that B cell subsets exist in the heart. Kalikourdis group identified B cells in the healthy murine heart via single cell technologies and the expression of the B220 marker [27, 29], supporting the conservation of B cell subsets and function in the heart between humans and mice.

Interestingly, the neonatal heart also has B cell subsets to promote cardiomyocyte proliferation [33]. During transition to adulthood, the markets of B cells are altered, and naïve B cells have been shown to circulate between the heart and spleen throughout life but the functional significance of this equilibrium has not been identified [34].

3.2 The role of B cells in cardiovascular disease

Upon the seminal work of Adamo et al. [35] dated in 2020, we summarize the novel findings on the contribution of B cell subsets and Igs related to atherosclerosis, ischemic heart disease and heart failure (HF) (Fig. 1A-C).

Cellular Physiology and Biochemistry


Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822 Published online: 24 October 2025

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

Fig. Molecular mechanisms suggested for the interplay of B cells in cardiovascular disease. This Fig. summarizes the proposed mechanismsby which B-cell subsets contribute to cardiovascular pathology. A) In atherosclerosis, splenic B2 cells release proinflammatory cytokines that promote myeloid cell infiltration, increase vascular permeability, and amplify inflammation. IRA B cells expand DCs and enhance IgG class switching, whereas MZ B cells promote thrombosis through IgG-mediated platelet activation. These subsets may promote atherosclerosis. Conversely, exert atheroprotective cells effects by producing natural IgM that recognizes oxLDL and apoptotic cells, while Bregs secrete IL-10, attenuating vascular inflammation. B) In ischemic injury, CD20+ B cells are rapidly recruited after AMI, expressing genes linked to activation, fibrosis and differentiation into plasma and memory B cells. Antibody production (IgM, IgG) contributes to infarct size, partly through complement activation. Circulating CD11b+ B1 cells correlate with larger infarcts, whereas B2 cells are associated with LVEF. splenic MZ B cells secrete CCL7, driving myeloid cell recruitment to the infarcted heart, an effect counteracted by IL-10-producing Bregs. Bone marrow B cells undergo glucocorticoiddriven autophagic death mediated by NHE1. C) In heart failure, HSC proliferation results in macrophage VCAM-1 upregulation. B cells interact with eosinophils via CD44, and IgG antibodies against myosin, troponin, or complement C3 are detected in the heart. Reduced CD23 expression increases splenic IgE levels, further amplifying inflammation. B regs: regulatory cells; CCL/CCR: chemokine ligand/receptor; CXCR:C-X- chemokine receptor, DCs: dendritic cells; ECM: extracellular matrix; FcyRs: Fc gamma receptors; HSC: hematopoietic stem cells; Ig: immunoglobulin; IL: interleukin; IRA: Innate response activator; LVEF: Left

ventricular ejection fraction; MZ: marginal zone B cells; NHE1: sodium-hydrogen exchanger-1; NFATC-2: nuclear factor of activated T cells, cytoplasmic differentiation 2; oxLDL: oxidized LDL, TNF-a: tumor necrosis factor a, VCAM-1:vascular adhesion molecule -1.

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

3.2.1 Atherosclerosis

B cells have emerged as significant contributors to vascular inflammation, atherosclerosis, and thrombosis. They have been identified in human carotid atherosclerotic plaques [36] and their interactions with endothelial cells, platelets, and other immune components underscore their multifaceted involvement in vascular pathology.

Activated B cells secrete pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF- α), IL-6, and IL-1 β , which can induce endothelial cell-activation and dysfunction and in turn, increase monocyte and macrophage infiltration [37, 38]. This process is characterized by increased expression of adhesion molecules, enhanced vascular permeability, and a pro-thrombotic state, all of which are critical early events in atherogenesis and thrombosis. Furthermore, B cell-derived cytokines can promote the recruitment and activation of other immune cells, amplifying vascular inflammation. B cells can influence platelet function through the formation of immune complexes that engage Fc gamma receptors (FcyRs) on platelets. This interaction can lead to platelet activation, aggregation, and the release of pro-thrombotic mediators, thereby contributing to thrombus formation [37]. Additionally, B cell-derived antibodies can directly bind to platelet antigens, further modulating platelet activity and promoting a pro-thrombotic environment [39].

B cells also exhibit both protective and pathogenic roles in atherosclerosis, largely dependent on their subset classification. B1 cells produce natural IgM antibodies that recognize oxidized low-density lipoprotein (oxLDL) and apoptotic cells, facilitating their clearance, thereby exerting atheroprotective effects [40]. In contrast, B2 cells, comprising follicular and MZ B cells, promote atherosclerosis by producing pro-inflammatory cytokines and pathogenic IgG antibodies in *Apoe*^{-/-} mice [41]. Bregs suppress immune responses through the production of IL-10 and have been implicated in the attenuation of atherosclerosis by modulating T cell responses and reducing vascular inflammation in a mouse model of systemic lupus erythematosus (SLE) and atherosclerosis [42].

The unique B-cell subsets and their role in atherosclerosis is still under investigation. For instance, depletion of B2 cells using anti-CD20 antibodies or BAFF receptor antagonists has been shown to reduce atherosclerotic lesion development in murine models [43]. A distinct subset of B1 cells—termed innate response activator (IRA) B cells—has been identified to respond to lipopolysaccharide (LPS) stimulation by secreting GM-CSF. IRA B cells are distinguished from conventional B1 cells as they express the immature B-cell marker CD93. IRA B cell deficiency in cholesterol-fed Ldlr⁻/- mice resulted in reduced atherosclerosis [44]. IRA B cells can promote mature DC expansion, leading to increased IFN-y-producing T helper cells and a class switch from IgG1 to IgG2c antibodies directed against oxLDL which enhances pro-atherogenic immune responses. Notably, IRA B cells were found at higher levels in the spleens of patients with symptomatic cardiovascular disease (CVD) compared with those with asymptomatic disease, suggesting their potential role in disease progression [44].

3.2.2 Post-ischemic myocardial injury

Cardiomyocyte necrosis and microvascular damage release intracellular components activating neutrophils, monocytes, and macrophages [32]. CD20⁺ B cells in patients and B220*IgM* B cells in mice are recruited early after acute myocardial infarction (AMI) in the heart, contributing to innate and adaptive immune response to AMI via antibody-dependent and independent mechanisms.

In patients within 6 hours of AMI, B cells account for approximately 7% of PBMCs [45]. Single-cell RNA sequencing highlighted that in both immature and mature B cells, chemokine signaling and immunometabolism were affected. Notably, mature B cells in patients with fibrous plaque rupture had markedly elevated expression of the IL-4 receptor and the levels of IL-7, suggesting their activation and cytokine production [45]. In another study in patients, upon thrombolytic therapy for AMI, circulating CD11b⁺ B1 cells correlated to the infarcted mass and B2 cells (CD19*CD20*CD43-) remained independent predictors of left ventricular ejection fraction (LVEF)[46]. In parallel, in patients with AMI, a pertained increase of IgG

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

was observed that can trigger antigen-specific adaptive immune responses, contributing to sustained injury but these IgG epitopes require further investigation [47]. Tan et al. analyzed the proteins interacting with Igs in patients with AMI and chronic stable coronary syndrome. They revealed that the Igs' proteome landscape included factor X, which was validated as target of the AMI related B cell repertoire. Moreover, immunoglobulin-associated proteome (IgAP) was related to the pathways of complement activation and cholesterol metabolism [48].

In mice, an increased proportion of activated (CD69*) B cells in the myocardium was detected from the 3rd day to 1 week post-AMI, and a similar increase was observed in the spleen and the peripheral blood at days 3 and 5. Also, at day 5 the expression of TNF-α, IL-18, IL-6, TGF-81, and BAFF was the highest in the myocardium, spleen and peripheral blood with the most obvious myocardial inflammatory cell infiltration [49]. Early post-AMI, in both mouse and human hearts, B cells showed increased expression of transcription factors related to their activation. These included nuclear factor of activated T cells, cytoplasmic differentiation 2 (NFATC2) and MHC class II gene expression, which were normalized at later stages (28 days) [32]. Long-term post-AMI, maturation and memory B cell formation genes were upregulated (i.e., NF-κB1 and STAT5B) in parallel with genes relative to plasma cell maturation and antibody production [32]. This study also reported the existence of collagenproducing B cells supporting the role of B cells in fibrosis [32].

B cell knock-out mice demonstrated decreased fibrosis in parallel to decreased gene expression levels of cytokines and fibrosis markers (i.e. TNF-α, IL-1β, IL-6 and TGF-β1) in the myocardial tissue and the peripheral blood, but the exact cell origin of these cytokines was not defined [49]. Heinrichs et al. showed that B cell populations increased up to the 7th day post AMI in the scar area in the murine heart [50]. Heart B cells uniquely expressed Tafb1 and Cxcr5 and Ccr7 receptors compared to B cells from the lymph nodes. Antibody-mediated neutralization of CXCL13 was performed and when Cxcr-/- mice were employed, B cell recruitment and cardiac Taf\$1 expression was ameliorated [50]. Ultimately these strategies had a neutral effect on cardiac function and morphology post AMI, questing the role of B cells as a source of TGF-1 mediated fibrosis.

Clonal expansion of B cells in lymph nodes and natural IgM infiltration in the heart, as observed in mice, [50] could account for a future strategy to target B cells in AMI. Natural IgM antibodies contribute to the myocardial infarct size. Mice bearing either a selective ($Cr2^{-/-}$) or total deficiency (RAG-1^{-/-}) in IgM demonstrated reduced infarct size which was comparable to wild type mice when IgM was injected [51]. Besides the heart, the role of splenic MZ B cells was highlighted in AMI mice with permanent ligation. Sun et al. demonstrated that miR21 or *Hif1a*-specific deletion from MZ cells ameliorated cardiac function [52]. They also proved that miR21/HIF-1α signaling in MZ B cells results in TLR-dependent CCL7 expression which leads to inflammatory monocyte recruitment in the ischemic myocardium [52].

Despite several reports of the contribution of B cells in myocardial damage, specific B cell subsets have favorable effects on cardiac function. Intramyocardial injection of B-lymphocytes early post-infarction in rats resulted in preserved LVEF and amelioration of apoptosis [53]. This population was CD45RA⁺ and comprised mainly immature and mature B cells [53], suggesting that non-activated immature B cells can have a protective role. In parallel, B cells can interact with neutrophils leading to their phagocytosis from macrophages in vitro and in vivo, which overall confers a cardioprotective effect [54]. Bregs possess anti-inflammatory effects, although the exact mechanism mediating this effect is not fully elucidated [55]. In a small cohort of patients after AMI, circulating levels of CD24hiCD38hi Bregs, but not of CD24*CD27* B10 cells, were reduced compared to stable angina pectoris, suggesting the role of Bregs in inflammation upon plaque rupture and thrombi formation [56]. In the pericardial fat of murine hearts, IL-10 producing Bregs attenuated monocyte recruitment and IL-10 depletion led to exacerbated myocardial injury and function [57]. A therapeutic strategy that was shown to increase Bregs subsets is via low doses of IL-2 in patients with type 1 diabetes or BACH2 suppression in murine and human isolated B cells [58].

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822 © 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

Hu et al. reported that AMI stimulates glucocorticoid release from the neuroendocrine system, inducing sodium-hydrogen exchanger-1 (NHE1)-mediated autophagic death of bone marrow B cells, accompanied by reduced lineage commitment, activation, and antibody production, while splenic B cells expanded [59]. In the same study, the authors suggested that the sodium glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin which has cardioprotective effects [60–62], preserves the bone marrow naïve B cell populations [59]. These results are in line with the myocardial structural and functional improvements 72 hours post-AMI by the infusion of bone marrow (but not spleen or blood)-derived B cells into C57BL/6] mice prior to MI induction [59]. Empagliflozin reduced myocardial infiltration of Ly6Chi inflammatory monocytes and neutrophils in AMI mice [60], attenuated the percentage of myeloid cells in the spleen, and in parallel reduced cardiac GM3 gangliosides which induce immune cell recruitment in a TLR-dependent manner [63]. Empagliflozin also reduced circulating white blood cell-counts in diabetic-AMI patients [60], altogether bringing the immune-heart axis in the forefront of the suggested cardioprotection by SGLT-2 inhibitors.

3.2.3 Heart failure

In the failing heart of patients, microarray data reported increased myocardial infiltration of memory B cells, which produced antibodies, cytokines and chemokines involved in the development of HF [64]. In the peripheral blood, increased CD19⁺ or TNFproducing cells have been reported for HF patients [29]. The functional role of cardiac B cells has been investigated in the context of dilated cardiomyopathy (DCM) and arrhythmogenic right ventricular cardiomyopathy (ARVC) in humans by the group of Bermea et al. [31]. In ARVC, the interaction of B cells with other populations was reduced compared to healthy hearts. In DCM, an increased interaction with macrophages, monocytes, cardiomyocytes, and endocardial cells was observed, possibly through the activation of the phosphoinositide 3-kinase (PI3K) pathway. B cell communication with fibroblasts, epicardial fat cells, and other stromal cells was increased via the interaction of extracellular matrix proteins, such as laminin, collagen, and fibronectin with CD44 on B cells. In the same study, eosinophils interacted with B cells through the CD44/CD74 complex, which activates NF-κB signaling, suggesting that B cells play a role in eosinophil activation in DCM.

Rats with HF with reduced ejection fraction (HFrEF) of ischemic origin have elevated mature IgG isotypes in their circulation targeting myosin, troponin or complement component (C)3. Similarly, IgGs and C3 heart depositions were evident in HF patients in the perivascular and interstitial space [65]. Martini et al. suggested that cardiac B cells are activated and expanded in a murine model of pressure overload (transverse aortic constriction, TAC) [66]. B cells clustered together but failed to organize in follicles despite the expression of Cxcr5. The role of auto-antibodies is highlighted by the study of Smolgovsky et al. [67]. in which, TAC results in protein modifications with isolevuglandins (lipid peroxidation products) and in B cell responses with the production of anti-isolevuglanin antibodies. These effects were not replicated in HF with preserved ejection fraction (HFpEF). Recently, in a TAC mouse model, Feng et al. [68]identified that splenic IgE+ B cells are elevated due to the reduction of CD23, which negatively regulates IgE+ production. A key mediator for this process was lactotransferrin which is released by the heart [68]. HF patients have also increased IgE levels.

The role of inflammation in HFpEF patients is appreciated based on conventional markers [i.e., high-sensitivity C-reactive protein (hs-CRP), IL-6] that predict morbidity and mortality, but whether this immune activation is directly related to B cell functions is illdefined.

The main driver of HFpEF is hypertension. Guzik at al. [69], reviewed the immunological aspects observed in hypertension. Angiotensin II infusion leads to increased splenic B cells and plasma cells in mice, in parallel with augmented circulating and aortic IgG. B cell depletion or BAFF receptor deficiency attenuated hypertension, aortic accumulation of macrophages and stiffening [70]. However, the role of Ig production has been debated since global B cell or IgM deficiency did not result in the attenuation of hypertension [71]. Yet, in an angiotensin-

Cellular Physiology

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by and Biochemistry Published online: 24 October 2025 Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

II-induced HF mouse model, B-cell absence resulted in preservation of the cardiac function, attenuation of hypertrophy and collagen deposition in parallel with reduced IgG deposition [72].

In patients with diastolic dysfunction, elevated circulating levels of IgG1 and IgG3 were detected which corroborated with cardiac remodeling [73]. HSC proliferation via metabolic regulation of neighboring myeloid cells has been identified as a driver of HFpEF, leading to the modulation of macrophage adhesion molecule Vcam1 in a murine 2-hit model of HFpEF that incorporates obesity and hypertension [74]. Of note, \(\beta \)-microglobulin, a component of MHC class I which is elevated in patients with B cell malignancies, has been found elevated also in patients with pulmonary hypertension and HFpEF predicting disease severity [75]. HFpEF was also associated with decreased lympagiogenesis and lymphatic endothelial cells in mice and patients [76]. The possible relation of these findings to B cell regulation remains to be elucidated.

In summary, in the healthy myocardium, B cells, including naïve, memory, B1, plasma cells, and Bregs, reside in interstitial, intravascular, myocardial and epicardial compartments, interacting with endothelial, stromal cells and macrophages that support tissue surveillance, yet more roles are soon to be clarified. In CVD, B cells exert subset- and condition-specific effects. In atherosclerosis, B1 cells and Bregs provide atheroprotection, while B2 and IRA B cells promote inflammation, pathogenic IgG responses and a pro-thrombotic environment (Fig. 1A). In post-ischemic myocardial injury, B cells are early recruited and activated, contributing to cytokine production, fibrosis and antibody-mediated tissue damage, while cardioprotection via Bregs and immature B cells has been reported (Fig. 1B). In HF, B cells participate in maladaptive remodeling through cytokine production, autoantibody generation, and interactions with cardiomyocytes, eosinophils, macrophages, and stromal cells (Fig. 1C). Their exact role in HFpEF remains less clearly defined. Overall, B cells serve as a promising target for the rapeutic modulation in CVD since B cell depletion or modulation could mitigate inflammation, hypertrophy, and functional decline.

4. Cardiovascular disease in B cell-related hematologic malignances

Most B-cell hematologic malignancies are linked with increased CV risk due to a complex interplay of disease, treatment and patient-related factors.

Multiple myeloma (MM), a plasma cell malignancy with monoclonal protein secretion, predominantly affects the elderly—who are already at higher baseline CV risk. Up to 7.5% of MM patients experience CV events such as HF, arrhythmias, or ischemia [77, 78]. MM is frequently associated with-CV comorbidities, influenced by both disease-related and treatment-related factors. For instance, anemia and renal dysfunction are independent predictors of CVD, and hypercalcemia can predispose to arrhythmias.

Venous thromboembolism (VTE) is a common and serious complication associated with MM or its treatment. VTE rates range from 4% - 16%[79] and MM patients have a 9-fold increased risk of VTE compared to the general population. In patients with MM, monoclonal protein has been linked to hyperviscosity, hyperfibrinogenemia, decreased protein C or S activity, impaired fibrinolysis and interferes with coagulation. In parallel, elevated IL-6 and TNF- α , as well as plasma cell-derived extracellular vesicles cause endothelial cell and platelet activation [80]. Therapy-related factors contribute significantly to the risk observed, like corticosteroids, proteasome inhibitors (PIs) [81, 82], high-dose melphalan, immunomodulatory drugs (IMiDs) [83, 84] and novel agents such as cellular therapies [85, 86]. IMiDs in particular, increase significantly the risk of thrombosis [87, 88].

Waldenström's macroglobulinemia (WM), defined as a lymphoplasmacytic lymphoma with IgM paraproteinemia, is associated with a 2-4-fold elevated VTE risk [89] but not with arterial thrombosis risk. IgM-related hyperviscosity impairs microcirculation and promotes thrombosis through red cell aggregation and clotting factor interference [90, 91]. Inflammatory cytokines and elevated FVIII levels exacerbate the prothrombotic environment [92, 93].

Cellular Physiology

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822 © 2025 The Author(s). Published by

and Biochemistry Published online: 24 October 2025 Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

Monoclonal gammopathy (MG) is characterized by the presence of a monoclonal protein produced by a low-grade plasma or B-lymphocytic clone. Monoclonal gammopathy of undetermined significance (MGUS) is present in 3.2% of Caucasians aged 50 years [94, 95], an incidence that increases with age [96]. Many studies have demonstrated an association between MGUS, CV risk [97, 98] and VTE risk [97], but the link is mostly epidemiological. The recent iSTOPMM study evaluated patients with "screened", rather than "clinical MGUS" and confirmed a 1.3-fold increased VTE but not arterial thrombotic risk [99]. Studies on biomarkers suggested possible shared biologic features between MM and MGUS like platelet activation and hypercoagulability [100, 101]. The term Monoclonal Gammopathy of Thrombotic Significance (MGTS) [102] has been introduced to describe patients presenting with clinically significant thrombotic complications linked to the M-protein with uncommon thrombogenic properties, such as anti-platelet factor 4 activity but otherwise no overt malignancy [103, 104].

Excessive production of LCs by plasma cells and their deposition as amyloid fibrils in various organs comprises the clinical entity of light chain (AL) amyloidosis, which is a separate but related condition that results in cardiac involvement. In AL amyloidosis, a lowgrade clonal plasma or B cell population produces amyloidogenic free LCs that aggregate to form insoluble fibrils, which deposit in tissues causing organ dysfunction [105]. Over 75% of patients have cardiac involvement at diagnosis [106]. Even in the prefibrillar state, the amyloidogenic LCs (λ subtype in 80%) induce cardiotoxicity and increase cellular oxidative stress in human heart cells [107]. Amyloid infiltration results in ventricular wall thickening, diastolic dysfunction (initially with preserved LVEF), and poor atrial contractility increasing the risk of thromboembolic complications, and atrial or ventricular arrhythmias. LCs cause diastolic dysfunction in isolated murine hearts [108], and result in direct impairment of cardiomyocyte contractility and calcium handling in adult rat ventricular cardiomyocytes [109]. Cellular abnormalities involved in LCs' cardiotoxicity include impairment of lysosomal activity and autophagy in isolated rat cardiomyocytes and in zebrafish [110, 111]. *In vitro*, the activation of a non-canonical p38α MAPK pathway has also been related to LC cardiotoxicity [112] along with mitochondria dysfunction and integrity by interacting with mitochondrial targets, such as optic atrophy 1 (OPA-1) [113]. The role of inflammation in LCmediated toxicity and amyloidosis has been also suggested [114], while novel mechanisms of cardiotoxicity are currently under investigation [115].

Non-Hodgkin lymphoma (NHL) encompasses a heterogeneous group of hematological B-cell neoplasms with varying clinical and pathological features [116]. Diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL) and chronic lymphocytic leukemia (CLL) are the most common subtypes. Other B cell malignancies include Hodgkin lymphoma (HL), with germinal center B lymphocytes that underwent transformation during maturation, and B cell acute lymphoblastic leukemia (ALL), an aggressive malignancy of B lymphoblasts. VTE is prevalent among B-cell hematologic malignancies [117]. The risk depends on patientrelated comorbidities, immobility, previous VTE and treatment-related factors. There is an association between high-tumor burden and aggressive cancer histology [92, 118]. Stark et al. [119], demonstrated in mice and humans that reduced blood flow velocity allows IgM to bind to the endothelium, resulting in surface exposure of P-selectin and von Willebrand factor (vWF), initiating platelet recruitment to the veins. This process is followed by platelet activation, promoting the deposition of IgG depending on fibrin and chondroitin sulfate-A but irrespectively of the antigen specificities of the IgG. This vicious circle of platelet activation leads to leukocyte recruitment and clot formation [119]. We need more data to understand the underlying pathogenetic mechanisms which contribute to an inherently prothrombotic state in clonal B-cell malignancies.

Treatment advances over the last decades have significantly improved the survival of these patients, making the impact of toxicities and comorbidities increasingly evident. The risk and prevalence of CV comorbidities and associated mortality is significantly higher in patients with NHL and HL compared to the general population [120, 121]. NHL patients have up to a 14-fold higher risk of CV mortality [122]. The risk is higher for more aggressive NHLs.

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

Multiagent chemotherapy HSC transplantation and mediastinal radiation [123] also induce significant cardiotoxicity.

Clonal haematopoiesis, defined as somatic mutations and mosaic chromosomal alterations in blood cells including lymphocytes, is currently investigated as a primer of CVD (reviewed in [124–126]).

Overall, B-cell hematologic malignancies are closely intertwined with CV pathology, not only through treatment-related toxicities but also via intrinsic disease mechanisms such as hyperviscosity, hypercoagulability, inflammation, and amyloid LC-mediated cardiotoxicity.

5. Immunomodulatory therapies targeting B cells and their cardiovascular effects

5.1 Cluster of Differentiation (CDs) - Cell Surface Antigens

Multiple B-cell-depleting therapies, such as monoclonal antibodies (mAb) and bispecific T-cell engagers (BiTEs), are approved for the treatment of hematologic malignancies and autoimmune diseases. These agents can influence the CV system in both beneficial and adverse ways (Fig. 2).

Rituximab (anti-CD20) is a chimeric mAb targeting the CD20 antigen on mature B lymphocytes [127], but not on stem cells or plasma cells, offering a targeted approach to modulate B-cell-driven pathology. Rituximab induces the selective temporary depletion of CD20⁺ B cells, via antibody-dependent cell-mediated cytotoxicity (ADCC) and complementdependent cytotoxicity [128]. It has been approved for the treatment of lymphoma, rheumatoid arthritis (RA), and anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, showing favorable effects during off-label use for several immune-mediated diseases such as SLE [128]. Within 48 h of rituximab infusion, adverse cardiac events such as acute HF or AMI emerge, due to cytokine release; nevertheless, long term use of the antibody is beneficial for patients with chronic myocarditis or a heart transplant [129].

In both preclinical and clinical investigations, the administration of CD20-targeted agents has shown positive impact on cardiac remodeling and HF. In specific, in a TAC myocardial hypertrophy model, Ma et al. showed that rituximab significantly enhanced heart function, reduced myocyte hypertrophy, fibrosis, and oxidative stress [130]. Similarly, in murine models of AMI, anti-CD20 antibody treatment, targeting murine CD20, improved cardiac function and decreased adverse ventricular remodeling [22]. B cell depletion can be beneficial for specific types of myocardial injury such as myocarditis. Tschope et al. observed that six patients with DCM who did not respond to initial immunosuppressive treatment, had CD20⁺ B cell infiltration in endomyocardial biopsies and responded to rituximab infusions, with improved cardiac function [131].

Preclinical data and case reports encouraged further clinical investigations. The RITA-MI (Rituximab in Patients With ST-Elevation Myocardial Infarction) study was the first translational phase I/IIa trial to hypothesize the cardioprotective effects of anti-CD20targeted therapies in humans. Rituximab resulted in significant B cell depletion—more than 95% within 30 minutes of infusion—with sustained and dose-dependent effects on B-cell repopulation, lasting up to six months, while it was well tolerated, with no serious side effects. The 200-mg dose demonstrated the increase of transitional B cells at 6 months, which are known to have a regulatory phenotype, while with the 1000-mg dose, the B-cell compartment was significantly depleted. Ig levels remained unaffected throughout the follow-up period [132]. Currently, the CV effects of rituximab are investigated via the RITA-MI-2 study (RITA-MI-2; https://www.clinicaltrials.gov; unique identifier: NCT05211401) aiming to determine if post-AMI B cell depletion yields measurable clinical benefits in humans [133]. In support of the above, patients with pemphigus treated with rituximab had improved long-term CV and metabolic outcomes when compared to those receiving azathioprine or mycophenolate mofetil (MMF). Rituximab treatment significantly reduced the risk for AMI, stroke, peripheral vascular disease, hypertension, hyperlipidemia, type 2 diabetes, obesity, and osteoporosis, with no increase in all-cause mortality, providing evidence for the superior CV and metabolic

Cellular Physiology and Biochemistry

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822 Published online: 24 October 2025

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

safety of rituximanb over conventional immunosuppressants, particularly in patients with underlying risk factors [134]. Regarding the effect of CD20-targeting in atherosclerosis progression, the hypothesis remains to be established via RITA-MI 2.

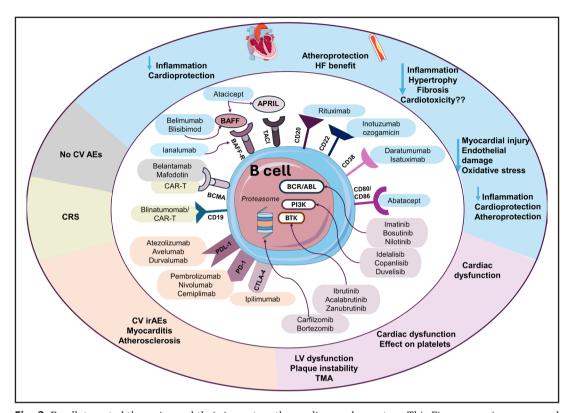


Fig. 2. B-cell-targeted therapies and their impact on the cardiovascular system. This Fig. summarizes approved B-cell-targeted therapies, their molecular targets, and their reported cardiovascular effects. These agents, developed for hematologic malignancies and autoimmune diseases, act on extracellular B-cell antigens such as CD20 (rituximab), CD22 (inotuzumab ozogamicin), CD38 (daratumumab, isatuximab), CD80/86 (abatacept), and CD19 (blinatumomab, CAR-T cells). They also target regulators of B-cell survival, including BCMA (belantamab mafodotin, CAR-T cells), BAFF (belimumab, blisibimod, atacicept), and BAFF-R (ianalumab), as well as immune checkpoints such as CTLA-4 (ipilimumab), PD-1 (pembrolizumab, nivolumab, cemiplimab), and PD-L1 (atezolizumab, avelumab, durvalumab). In addition, intracellular signaling pathways are targeted by BTK inhibitors (ibrutinib, acalabrutinib, zanubrutinib), PI3K inhibitors (idelalisib, copanlisib, duvelisib), BCR/ABL inhibitors (imatinib, bosutinib, nilotinib), and proteasome inhibitors (carfilzomib, bortezomib). By modulating B-cell function and survival, these therapies exert both beneficial and adverse cardiovascular effects, as demonstrated in preclinical and clinical studies. Beneficial effects (blue shading) include reduced inflammation, cardioprotection, and potential benefit in heart failure and atherosclerosis. In contrast, adverse effects (orange/ pink shading) encompass cardiovascular ir AEs, including myocarditis, atherosclerosis, cardiac dysfunction, plaque instability, TMA, and platelet dysfunction. CRS (green shading), typically observed with CAR-T therapies and BiTEs, indirectly affects the cardiovascular system, while some therapies show no clear cardiovascular adverse events, or their impact remains uncertain (grey shading). By organizing drugs according to their molecular targets and linking them to cardiovascular outcomes, the figure underscores the dual role of B-cell-targeted therapies as both potential mediators of cardioprotection and contributors to cardiotoxicity CV: Cardiovascular; CRS: Cytokine release syndrome; HF: Heart failure; AEs: Adverse events; irAEs: immune-related adverse events; LV: Left ventricular; TMA: Thrombotic microangiopathy; CD: Cluster of differentiation; BAFF(-R): B-cell activating factor (Receptor); BCMA: B-cell maturation antigen; TACI: transmembrane activator and calcium-modulator and cyclophilin ligand interactor; APRIL: proliferation-inducing ligand; PD-1: programmed cell death protein- 1; PD-L1: programmed cell death ligand-1; CTLA-4: cytotoxic T lymphocyte-associated antigen 4; BTK: Bruton's tyrosine kinase; PI3K: Phosphatidylinositol-3-Kinase; BCR/ABL: Breakpoint cluster region/Abelson tyrosine kinase

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

Beyond CD20, CD38 is another B-cell differentiation antigen, which serves as both a multifunctional receptor and an ectoenzyme (extracellular enzyme). It is highly expressed on the surface of B cells, including plasmablasts and plasma cells, as well as in nonhematopoietic tissues, such as neurons, endothelial cells and cardiomyocytes [135].

In MM and AL amyloidosis, mAbs targeting CD38 exploit its overexpression on malignant plasma cells to trigger cytotoxic effects [136, 137]. CD38 has emerged as a potential therapeutic target for CVDs, due to its involvement in the pathogenesis of AMI, atherosclerosis, cardiac arrhythmias, myocardial hypertrophy and pulmonary hypertension [138]. As the primary NAD⁺/NADP⁺-degrading ectoenzyme [139], CD38 plays a crucial role in the regulation of NAD⁺ homeostasis, modulating energy metabolism and calcium signaling through the CD38/cyclic adenosine diphosphate ribose/Ca²⁺ signaling pathway [135, 140]. This multifaceted role underscores potential therapeutic implications in ageing, metabolic disorders, and CVD. Supporting this, experimental studies have shown that CD38 inhibition, via miR-499a-5p-mediated downregulation in an in vitro model of hypoxia/reoxygenation or pharmacological agents such as thiazoloquin(az)olin(on)e 78c in an ex vivo model of myocardial ischemia-reperfusion (IR) injury, can reduce myocardial injury and endothelial damage following ischemia [141, 142]. Additionally, CD38 deficiency has been associated with reduced oxidative stress in the cardiac tissue from CD38^{-/-} mice fed with high fat diet [143].

In clinical practice, daratumumab, a human anti-CD38 antibody, is approved as monotherapy or in combination with standard-of-care regimens for newly diagnosed or relapsed/refractory (R/R) MM and AL amyloidosis patients [144]. Multiple clinical studies have reported daratumumab's potential to exert a cardioprotective effect. In the phase III CANDOR trial, in patients receiving daratumumab on top of carfilzomib and dexamethasone, the incidence of grade ≥ 3 cardiac failure was lower [136, 145]. In the phase III ANDROMEDA trial, in patients with newly diagnosed AL amyloidosis the addition of daratumumab to bortezomib, cyclophosphamide, and dexamethasone (D-VCd) resulted in higher rates of hematologic complete response in the overall study population and across all cardiac stages [137]. Although, HF was one of the most common grade 3 or 4 adverse events, a post hoc analysis revealed, that the exposure-adjusted incidence rate for cardiac events was actually lower with D-VCd than VCd (median exposure 13.4 and 5.3 months, respectively) [137, 146]. The mechanism behind this speculated cardioprotective effect is not fully understood but could be related to the inhibition of the ectoenzymatic activity of CD38, which restores metabolic disequilibrium and calcium homeostasis in the cardiac tissue.

Isatuximab, another anti-CD38 mAb used in the treatment of MM, was initially associated with hypertension and arrhythmias, including atrial fibrillation [129, 147]. However, in a phase II trial, dyspnea was reported as the only cardiac-related event with no significant difference between patients receiving isatuximab as monotherapy or in combination with dexamethasone [148]. Similarly, in the phase III IKEMA trial isatuximab showed no significant difference in the incidence of cardiac events [149].

Inotuzumab ozogamicin, an anti-CD22 mAb, is approved for the treatment of R/R CD22positive B-cell precursor ALL. CD22 is an inhibitory receptor expressed on B cells, and its targeting has shown immunomodulatory effects beyond oncology [150]. Specifically, in a mouse model of angiotensin II-induced nonischemic cardiomyopathy, administration of an anti-CD22 antibody attenuated cardiac hypertrophy and myocardial fibrosis, accompanied by reduced expression of pro-inflammatory cytokines such as IL-1β and TNF-α, decreased myocardial IgG deposition, and apoptosis [151]. Despite these promising preclinical findings, there are currently no clinical data supporting the CV benefit of inotuzumab in humans. On the contrary, veno-occlusive disease and QT interval prolongation, has been reported in patients receiving inotuzumab treatment [129].

Finally, abatacept, a cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) Ig, is used for the treatment of RA. It is designed to target CD80/CD86 on antigen-presenting cells, such as B cells, blocking their interactions with both the costimulatory receptor CD28 and the inhibitory receptor CTLA-4 on T cells, thereby limiting T-cell activation and immune responses [152, 153]. In B cells, this results in the promotion of Bregs functions by enhancing

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822 © 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

their ability to produce IL-10 and TGF-β [154, 155]. Abatacept reduced the CV risk when compared with a TNF inhibitor [156, 157] and decelerated atherosclerosis progression [158, 159]. Moreover, it showed cardioprotective effects in a mouse model of myocardial IR injury [160].

5.2 Receptors

B-cell maturation antigen (BCMA) is a receptor expressed on mature B cells and plasma cells, interacting with BAFF and a proliferation-inducing ligand (APRIL) [161]. Belantamab mafodotin, a BCMA-directed drug-antibody conjugate linked to the cytotoxic agent maleimidocaprovl monomethylauristatin F (mcMMAF), is approved for the treatment of R/R MM [162] and is currently under investigation in clinical trials (EMN27-NCT04617925) as a potential therapy for R/R AL amyloidosis. This antibody functions by inducing ADCC against myeloma cells. Both clinical trials and real-world data indicate a good safety profile with no CV adverse events reported [163–165].

Apart from BCMA, BAFF-R is present on the surface of mature B cells and plasma cells and has a potent selective affinity for BAFF, inducing downstream signaling pathways that lead to B-cell survival [166]. Preclinical studies propose that targeting the BAFF pathway can have a potential therapeutic benefit on CVDs, particularly AMI and atherosclerosis. In a mouse model, BAFF mAb-mediated B2-cell depletion hampered inflammation and CCL7mediated monocyte mobilization to the ischemic heart and was associated with decreased myocardial injury and improved cardiac function post-AMI [22]. Moreover, $Ldlr^{-/-}$ and Apoe^{-/-} mice with genetic or pharmacological depletion of BAFF-R exhibited a significant reduction in the B2 cell population and decreased lesion formation [167-169]. However, BAFF-targeted antibody in Ldlr-/- and Apoe-/- mice aggravated the size and complexity of atherosclerotic lesions despite depletion of B2 cells [170].

Currently, there are few drugs in use or under investigation targeting the BAFF-BAFF-R axis, mostly for hematological malignancies and auto-immune disorders. Among them, belimumab, a BAFF mAb, is the only one approved for treatment-resistant SLE [133]. In clinical practice, belimumab improves the lipid profile with an increase in HDL [171, 172] and has been associated with the enhancement of cardiac function in a patient with SLE and HFpEF [173]. Other investigational agents include blisibimod, a selective antagonist of BAFF, ianalumab, a mAb to BAFF-R, and atacicept, a transmembrane activator and calciummodulator and cyclophilin ligand interactor (TACI) recombinant fusion protein that binds both BAFF and APRIL. Thus far, no significant CV adverse events have been reported for these drugs [133].

Recently, B cells and their role in the tumor microenvironment are gaining growing attention. In this direction, various tumor-associated immune checkpoints (ICs) on the surface of B cells are identified and observed to be upregulated in the tumor [174]. These include T cell immunoglobulin and mucin domain-containing protein (TIM-1) [175], CTLA-4 [176], tumor-infiltrating T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) [177], programmed cell death protein-1 (PD-1)[178] and programmed cell deathligand 1 (PD-L1) [179]. Aberrant B-cell IC signals disrupt the function of B cells per se, promoting the release of IL-10 and modulating the cellular functions of antigen-presentation, co-stimulation and memory. They also affect the tumor-killing functions of CD4⁺ T cells, CD8⁺ T cells, and Tregs, leading to tumor immune escape [174, 175].

Blocking ICs on B cells is advantageous for boosting anti-tumor immune response and suppressing tumor progression [174]. To date, antibodies targeting four ICs, namely CTLA-4 (ipilimumab), PD-1 (pembrolizumab, nivolumab, cemiplimab), PD-L1 (atezolizumab, avelumab, durvalumab), and lymphocyte activation gene 3 (LAG-3) (relatlimab), have been approved for the treatment of several malignancies, such as melanoma, non-small cell lung cancer, classical HL, either as monotherapy or as adjuvant therapy [180].

Clinically, immune checkpoint inhibitors (ICIs) have been associated with immunerelated adverse events (irAEs), which encompass rare but severe CV complications, such as myocarditis, cardiomyopathy, pericardial disease, arrhythmias, and atherosclerosis [181].

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

Underlying cardiotoxicity mechanisms have been proposed, including increased systemic activation of T cells and release of pro-inflammatory cytokines [182] and especially IL-17A [183], endothelial activation and microvascular coronary endothelial dysfunction [184, 185] and cross-reactivity between tumor-infiltrating T cells and common antigens in cardiac and endothelial cells [186]. However, only scarce data exist about the role of B cells. A few studies have described possible mechanisms of B cell-mediated toxicity, either through the activation and expansion of B autoreactive populations due to activation of autoreactive clones by ICIs, recognition of neoantigens homologous to non-cancer antigens, or modified cytokine expression profiles [187]. Interestingly, increased activation of B cell and plasmablast levels as well as the presence of autoreactive antibodies have been observed in ICI-treated patients at increased risk of irAEs [187, 188].

5.3 Interaction with other cells

Chimeric Antigen Receptor T-cell (CAR-T) and BiTE therapies have transformed the treatment landscape for hematological malignancies such as ALL, B-cell lymphomas and MM. CV toxicities have emerged as an increasingly recognized cause of treatment-related morbidity and mortality [189].

CAR-T cells are ex vivo genetically engineered T cells programmed to induce a cytotoxic immune response after the recognition of specific tumor-associated antigens, such as CD19 in B-cell malignancies (tisagenlecleucel and axicabtagene ciloleucel) or BCMA in MM [144, 189]. Clinical trials of CAR-T cell therapy have reported a low incidence of cardiotoxicity. possibly due to patient enrollment criteria. However, subsequent retrospective cohort studies highlighted the occurrence of major adverse CV events (MACE) in 10-20% of patients [189]. These include tachyarrhythmia, hypotension, troponin elevation, cardiomyopathy, pericardial and pleural disorders, VTE and cardiogenic shock [190–192].

The exact mechanisms of T-cell therapy-induced cardiotoxicity remain elusive. The predominant mechanism involves indirect cardiotoxic effects following immune system activation: tumor-directed inflammation within the microenvironment can lead to a systemic cytokine storm, known as cytokine release syndrome (CRS), that impairs cardiac function [193–195]. CRS is characterized by increased levels of pro-inflammatory cytokines, primarily IL-6, IL-1, TNF-α, and nitric oxide, released by activated T cells, macrophages and monocytes [196]. IL-6 has been proposed to activate the gp130/STAT3 signaling pathway and induce oxidative stress. Subsequently, this leads to mitochondrial dysfunction, cardiomyocyte apoptosis and cardiac hypertrophy. In addition, IL-6 modifies calcium handling and impairs myocardial contractility [197]. CRS treatment involves the administration of tocilizumab, (an antibody binding and blocking the soluble and transmembrane IL-6 receptor), particularly in severe cases, to decrease the risk of cardiotoxicity [189]. Additional proposed mechanisms for CAR-T cell-associated cardiotoxicity include the direct T cell-mediated damage to cardiac tissue due to cross-reactivity with cardiac antigens via molecular mimicry or immune alloreactivity. Moreover, T cells can inadvertently recognize and attack heart-specific proteins unrelated to the tumor, leading to off-target cardiac toxicity [189].

BiTEs are fusion proteins with 2 different antigen-binding sites: one directed against the CD3 molecule, which leads to downstream activation of cytotoxic T lymphocytes, and another directed specifically at an antigen present on malignant cells [198]. Blinatumomab, a bispecific CD19/CD3 antibody targeting CD19 on B cells, has been approved for R/R CD19-positive B-cell precursor ALL [199]. Data regarding the incidence of cardiotoxicity are limited, but in clinical practice, it has been associated with CRS, tachycardia and HF [189].

5.4 Intracellular targets on B cells

PIs form the cornerstone of combination regimens for patients with MM and AL amyloidosis, although they are also used for treating other malignancies. PIs target the chymotrypsin-activity of the 20S unit of the proteasome [200], causing proteome instability due to the accumulation of aggregated, unfolded, and/or damaged polypeptides; this sustained proteome instability induces cell death.

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822 © 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

Disruption of proteasome function has been associated with the development of CVD [201]. Accumulation of misfolded proteins has been observed in various cardiomyopathies, including hypertrophic, dilated, and desmin-related forms [202], and significant impairment of proteasomal activity has been documented in HF and in myocardial tissue obtained from patients with hypertrophic cardiomyopathy [203]. Therefore, pharmacological inhibition of the proteasome can be particularly harmful in cases with pre-existing cardiac dysfunction or advanced age.

Carfilzomib, an intravenous irreversible PI, is associated with increased incidence of hypertension (9-27%) [204, 205], HFrEF (4.1-16.2%) [204, 206], ischemic heart disease (1.8-17.6%), and arrhythmias (2.4-7%) [206, 207]. Bortezomib, an intravenous reversible PI, is also associated with CV toxicity, albeit at a lower degree compared to carfilzomib [147, 200]. The only orally administered PI ixazomib is generally not associated with a high risk for CV toxicity, apart from scarce evidence [200].

Bortezomib's cardiotoxicity is associated with impaired cardiomyocyte survival and contractility due to protein accumulation, mitochondrial dysfunction and worsening of the atherosclerotic plaque vulnerability [144, 208]. The higher risk of CV toxicity of carfilzomib is likely linked to irreversible inhibition of the proteasome's proteolytic activity and the broader dosing spectrum [200]. The potential underlying mechanism of cardiotoxicity and LV dysfunction involves mitochondrial dysfunction [209]. In a cell model using human induced pluripotent stem cell-derived cardiomyocytes, carfilzomib reduced mitochondrial membrane potential, ATP production, and mitochondrial oxidative respiration, resulting in decreased cardiomyocyte contractility. Carfilzomib treatment also downregulated gene expression of extracellular matrices, the integrin complex, and cardiac contraction [144, 210]. Impaired autophagic signaling was observed with carfilzomib in in vivo models of young and aged mice [211, 212]. Additionally, data indicate a possible role of the pyruvate oxidation pathway in mitochondrial dysfunction, as evidenced by the down-regulation of pyruvate and up-regulation of lactate dehydrogenase B among patients who experienced CV adverse events with carfilzomib [213]. Carfilzomib, like bortezomib, affects vascular smooth muscle cells, probably exacerbating the vulnerability of atherosclerotic plaques in patients [136].

Another important vascular complication observed with all proteasome inhibitors is thrombotic microangiopathy (TMA) [200, 214]. Proteasome inhibition can disrupt protein homeostasis within vascular cell walls, promoting cellular aging, cell cycle arrest, and programmed cell death [201]. Increasing in vitro evidence supports that the ubiquitinproteasome pathway (UPP) regulates several endothelial cell functions, including the expression and activation of endothelial nitric oxide synthase (eNOS), and the balance of vasodilatory and vasoconstrictive signaling [215]. Additionally, the UPP contributes to vascular inflammation by modulating NF-κB activity and upregulating adhesion molecule expression [216]. While the full pathophysiologic mechanisms are not completely understood, microvascular injury appears to be linked, in part, to the suppression of vascular endothelial growth factor (VEGF) signaling [200].

Paradoxically, under certain experimental conditions, short-term proteasome inhibition has shown cardioprotective effects, particularly by attenuating or preventing left ventricular hypertrophy in animal models of chronic pressure overload and in hypertensive Dahl saltsensitive rats [217]. Moreover, treatment with proteasome inhibitors at low doses enhanced endothelial-dependent vasodilation in rat aortic rings in vitro, via increasing the expression and activity of eNOS and reducing the levels of endothelin-1 [215, 218, 219].

Moreover, intracellular signal transduction downstream BCR, mediated by tyrosine kinases, mainly Bruton's tyrosine kinase (BTK) and PI3K, influences B-cell activation, proliferation and differentiation [220, 221]. Lately, BTK inhibitors and PI3K isoform-specific inhibitors have been approved for the treatment of hematologic malignancies.

Specifically, ibrutinib, an irreversible BTK inhibitor, has received approval for the treatment of CLL, MCL, and Waldenström's macroglobulinemia. In the clinical setting, the drug is reported to induce cardiotoxicity, mainly arrhythmias and hypertension [220],

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

possibly due to interactions with PI3K and other TEC pathways in cardiomyocytes [144, 222]. In platelets, BTK inhibition is associated with central nervous system bleeding or ischemia, because it affects platelets' activation [223, 224]. Recent evidence indicates that newer BTK inhibitors, such as acalabrutinib and zanubrutinib, have increased selectivity for BTK, resulting in reduced cardiac implications [225, 226].

To date, three PI3K inhibitors have been approved for the treatment of CLL and indolent NHL: idelalisib, copanlisib and duvelisib [221], but CV adverse events can occur, including arrhythmias and cardiac dysfunction due to the regulatory role of specific PI3K isoforms in the heart [129, 227].

Finally, breakpoint cluster region (BCR)-Abelson (ABL) tyrosine kinase, is implicated in signal transduction pathways that regulate survival and proliferation in hematopoietic cells. It is used for the treatment of CLL in combination with other agents, such as imatinib, bosutinib and nilotinib [228, 229]. Inhibitors of BCR/ABL cause various forms of cardiotoxicity, such as congestive HF, AMI, coronary and peripheral artery disease, peripheral arterial occlusive disease, VTEs, and arrhythmias [129, 230]. The mechanism underlying these effects is not fully understood, but it appears to involve mitochondrial dysfunction [129, 231], autophagy and cardiomyocyte apoptosis [232, 233].

Taken together, B-cell-targeted immunomodulatory therapies have revolutionized the treatment of hematologic malignancies and autoimmune diseases, being increasingly recognized for their CV effects. Anti-CD20 therapy (rituximab) has demonstrated potential cardioprotective effects by attenuating adverse remodeling in preclinical models and is under investigation in post-AMI settings in humans. CD38-targeting antibodies, such as daratumumab and isatuximab, can restore metabolic disequilibrium and calcium signaling by regulating NAD+ homeostasis, though further mechanistic studies are needed. Other agents, including inotuzumab (anti-CD22) and abatacept (CTLA-4-Ig), show promising preclinical cardioprotective effects. On the contrary, ICIs can induce rare but severe immunerelated CV toxicities, including myocarditis. Cellular therapies (CAR-T, BiTEs) carry risk for CRS-mediated cardiotoxicity, underscoring the need for careful monitoring. Intracellular B-cell signaling inhibitors (BTK, PI3K, BCR-ABL inhibitors) and PIs are associated with arrhythmias, hypertension, HF, and vascular complications, possibly due to mitochondrial and endothelial dysfunction and impaired autophagy. Collectively, these therapies highlight the dual potential for CV harm and benefit, underscoring that targeting specific surface markers is more beneficial for the CV system than tackling intracellular pathways in B cells.

6. Conclusions

Despite decades of research, the multifaceted role of B cells —as antigen-presenting cells, cytokine producers, and antibody-secreting effectors— remains underrecognized as a driver of disease and a therapeutic target in CV pathology. Therapeutic interventions targeting intracellular signaling pathways in B cells are frequently associated with cardiotoxicity and CV adverse events. This is largely due to the shared signaling mechanisms —such as proteasome function and PI3K signaling—between B cells and cell types of the myocardium including cardiomyocytes and endothelial cells. Consequently, using such broad-spectrum immunomodulators such as PIs are likely unsuitable as therapeutic agents in CVD. Emerging therapies targeting intracellular pathways in B cells must be rigorously monitored in early clinical trials for CV adverse events.

In a translational perspective, testing B cell-related therapeutics for CVD with antibodies to target specific cell surface markers would be more rational. Targeting cell surface markers that are expressed by B cells such as CD20, CD38, or CD80, and modulating the BAFF pathway, represent promising therapeutic approaches, though repurposing existing agents for AMI or HF requires optimized, tailored dosing regimens. Future directions could involve the development of small molecule inhibitors of CD's and BCMA or RNA silencing therapies to exploit B cell depletion and long-term cardioprotection, and to avoid the shortterm antibody-related cardiotoxicity and CRS. Yet, the efficacy of these strategies is doubtful in hematologic malignancies.

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

Receptor specificity must be carefully balanced to preserve the protective functions of specific subsets such as B1 cells and Bregs [234] especially in the heart and avoid compromising overall immune competence. The broader concept of immunomodulation through metabolic reprogramming could serve as an alternative to modify HF outcomes [235–237]. More comprehensive studies are needed to better understand the contribution of each B cell subset in cardiac disease and hematologic malignancies, having as ultimate goal to optimize B cell-targeted therapies. In this context, a precision medicine approach should be adopted, integrating both disease characteristics and patient-specific immune profilesparticularly B-cell subset composition—into clinical decision-making. Standardized assays for circulating B-cell subtypes and antibody signatures should be validated in large, multicenter cohorts and incorporated into risk prediction models to enable early CVD risk stratification, therapeutic guidance, and monitoring of treatment response.

Abbreviations

AL (Light chain-Amyloidosis); ALL (Acute lymphoblastic leukemia); ADCC (,Antibodydependent cell-mediated cytotoxicity); AMI (Acute myocardial infarction); APRIL (Proliferation-inducing ligand); ARVC (Arrhythmogenic right ventricular cardiomyopathy); BAFF(-R) B-cell (activating factor (Receptor)); BiTEs (Bispecific T-cell engagers); BCMA (B-cell maturation antigen); BCR (B cell receptor); BCR/ABL (Breakpoint cluster region/Abelson tyrosine kinase); Bregs (Bregulatory cells); BTK (Bruton's tyrosine kinase); CAR-T (Chimeric Antigen Receptor T-cell); CCL (C-C chemokine ligand); CCR (C-C chemokine receptor); CD (Cluster of differentiation); CLL (Chronic lymphocytic leukemia); CLP (,Common lymphoid progenitors); CMP (,Common myeloid progenitors); CRS (Cytokine release syndrome); CSF1 (Macrophage colony-stimulating factor); CTLA-4 (Cytotoxic Tlymphocyte-associated antigen 4); CV (Cardiovascular); CVD (Cardiovascular disease); CXCL (,CXC chemokine ligand); CXCR (CXC chemokine receptor); DCs (Dendritic cells); DCM (Dilated cardiomyopathy); DLBCL (Diffuse large B-cell lymphoma); D-VCd (Daratumumab, bortezomib, cyclophosphamide, and dexamethasone); eNOS (,Endothelial nitric oxide synthase); HC (Heavy chain); HL (Hodgkin lymphoma); FcyRs (Fc gamma receptors); (FL,Follicular lymphoma); HF (Heart failure); HFpEF (Heart failure with preserved ejection fraction); HFrEF (Heart failure with reduced ejection fraction); HSCs (Hematopoietic Stem Cells); ICs (Immune checkpoints); ICIs (Immune checkpoint inhibitors); IFN-γ (Interferon gamma); Ig (Immunoglobulin); IgAP (Immunoglobulin-associated proteome); IL (Interleukin); IMiDs (Immunomodulatory drugs); IR (Ischemia-reperfusion); IRA (Innate response activator); irAEs (Immune-related adverse events); Kd (Carfilzomib and dexamethasone); KdD (Daratumumab, carfilzomib, and dexamethasone); LAG-3 (Lymphocyte-activation gene 3); LC (Light chain); LPS (Lipopolysaccharide); LVEF (,Left ventricular ejection fraction); GM-CSF (Granulocytemacrophage colony-stimulating factor); mAb (Monoclonal antibodies); MACE (Major adverse cardiovascular events); mcMMAF (Maleimidocaproyl monomethylauristatin F); MZ (Marginal Zone); MG (Monoclonal gammopathy); MGTS (Monoclonal gammopathy of thrombotic significance); MGUS (Monoclonal gammopathy of undetermined significance); MHC (Major histocompatibility complex); MM (Multiple myeloma); MMF (Mycophenolate mofetil); NHE1 (Sodium-hydrogen exchanger-1); NFATC2 (Nuclear factor of activated T cells, cytoplasmic differentiation 2); NHL (Non-Hodgkin lymphoma); OxLDL (Oxidized lowdensity lipoprotein); PBMCs (Peripheral blood mononuclear cells); PD-1 (Programmed cell death protein-1); PD-L1 (Programmed cell death- ligand 1); PIs (Proteasome inhibitors); RA (Rheumatoid arthritis); R/R (Relapsed/Refractory); SDF1 (Stromal cell-derived factor 1); SGLT-2 (Sodium-glucose co-transporter-2); SLE (Systemic lupus erythematosus); TAC (Transverse aortic constriction); TACI (Transmembrane activator and calcium-modulator and cyclophilin ligand interactor); TGF (Transforming growth factor); TIGIT (Tumorinfiltrating T cell immunoreceptor with immunoglobulin and ITIM domain); TIM-1 (,T cell

Cellular Physiology and Biochemistry

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822 © 2025 The Author(s). Published by

and Biochemistry Published online: 24 October 2025 Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

immunoglobulin and mucin domain-containing protein); TLRs (Toll-like receptors); TMA (Thrombotic microangiopathy); TNF- α (Tumor necrosis factor alpha); Tregs (T regulatory cells); UPP (Ubiquitin-proteasome pathway); VEGF (Vascular endothelial growth factor); VTE (Venous thromboembolism); WM (Waldenström's macroglobulinemia);

Acknowledgements

AC and PEN were supported by the 2nd Call for Hellenic Foundation for Research and Innovation (H.F.R.I.) Research Projects to Support Faculty Members & Researchers "ElucidatioN of LIGHt chain amyloidosis induced cardioToxicity: EstablishMENT of *in vitro* and *in vivo* models" (ENLIGHTENMENT) and devote this work to late Professor Ioanna Andreadou.

Disclosure Statement

DF: honoraria; Janssen, GSK, Sanofi; EK: honoraria and research support; Johnson & Johnson, Pfizer, GSK.

References

- Dewing JM, Saunders V, O'Kelly I, Wilson DI. Defining Cardiac Cell Populations and Relative Cellular Composition of the Early Fetal Human Heart. 2021 Oct;2021.10.21.465281.
- Palmer JA, Rosenthal N, Teichmann SA, Litvinukova M. Revisiting Cardiac Biology in the Era of Single Cell and Spatial Omics. Circ Res. 2024 Jun;134(12):1681–702.
- 3 Leiva O, Hobbs G, Ravid K, Libby P. Cardiovascular Disease in Myeloproliferative Neoplasms. JACC CardioOncol. 2022 Jun;4(2):166–82.
- 4 Yong JH, Mai AS, Matetić A, Elbadawi A, Elgendy IY, Lopez-Fernandez T, et al. Cardiovascular Risk in Patients with Hematological Malignancies: A Systematic Review and Meta-Analysis. The American Journal of Cardiology. 2024 Feb;212:80–102.
- 5 Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol. 2019 May;20(5):303–20.
- 6 Doulatov S, Notta F, Laurenti E, Dick JE. Hematopoiesis: a human perspective. Cell Stem Cell. 2012 Feb;10(2):120–36.
- Green AC, Rudolph-Stringer V, Chantry AD, Wu JY, Purton LE. Mesenchymal lineage cells and their importance in B lymphocyte niches. Bone. 2019 Feb;119:42–56.
- 8 Bankovich AJ, Raunser S, Juo ZS, Walz T, Davis MM, Garcia KC. Structural insight into pre-B cell receptor function. Science. 2007 Apr;316(5822):291–4.
- 9 Chung JB, Silverman M, Monroe JG. Transitional B cells: step by step towards immune competence. Trends Immunol. 2003 Jun;24(6):343–9.
- 10 Cerutti A, Cols M, Puga I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol. 2013 Feb;13(2):118–32.
- Pillai S, Cariappa A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat Rev Immunol. 2009 Nov;9(11):767–77.
- Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation of antibody-secreting plasma cells. Nat Rev Immunol. 2015 Mar;15(3):160–71.
- Treml LS, Carlesso G, Hoek KL, Stadanlick JE, Kambayashi T, Bram RJ, et al. TLR stimulation modifies BLyS receptor expression in follicular and marginal zone B cells. J Immunol. 2007 Jun;178(12):7531–9.
- Barral P, Eckl-Dorna J, Harwood NE, De Santo C, Salio M, Illarionov P, et al. B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help *in vivo*. Proceedings of the National Academy of Sciences. 2008 Jun;105(24):8345–50.
- 15 Leadbetter EA, Brigl M, Illarionov P, Cohen N, Luteran MC, Pillai S, et al. NK T cells provide lipid antigenspecific cognate help for B cells. Proc Natl Acad Sci U S A. 2008 Jun;105(24):8339–44.

Cellular Physiology and Biochemistry Published online: 24 October 2025

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

Savage HP, Baumgarth N. Characteristics of natural antibody-secreting cells. Ann N Y Acad Sci. 2015 Dec:1362(1):132-42.

- 17 Davis RS. B-1 Cell Development and Function. Ann N Y Acad Sci. 2015 Dec;1362(1):110-6.
- Minges Wols HA. Plasma Cells. eLS. John Wiley & Sons, Ltd; 2015; pp 1–11.
- Shen P, Fillatreau S. Antibody-independent functions of B cells: a focus on cytokines. Nat Rev Immunol. 2015 Jul;15(7):441-51.
- Rastogi I, Jeon D, Moseman JE, Muralidhar A, Potluri HK, McNeel DG. Role of B cells as antigen presenting cells. Front Immunol. 2022 Sep;13:954936.
- Adler LN, Jiang W, Bhamidipati K, Millican M, Macaubas C, Hung S, et al. The Other Function: Class II-Restricted Antigen Presentation by B Cells. Front Immunol. 2017 Mar;8:319.
- Zouggari Y, Ait-Oufella H, Bonnin P, Simon T, Sage AP, Guérin C, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med. 2013 Oct;19(10):1273-80.
- 23 Chimen M, McGettrick HM, Apta B, Kuravi SJ, Yates CM, Kennedy A, et al. Homeostatic regulation of T cell trafficking by a B cell-derived peptide is impaired in autoimmune and chronic inflammatory disease. Nat Med. 2015 May;21(5):467-75.
- Magee CN, Boenisch O, Najafian N. The Role of Costimulatory Molecules in Directing the Functional Differentiation of Alloreactive T Helper Cells. American Journal of Transplantation. 2012 Oct;12(10):2588-
- 25 Rosser EC, Mauri C. Regulatory B Cells: Origin, Phenotype, and Function. Immunity. 2015 Apr;42(4):607-
- Neziraj T, Siewert L, Pössnecker E, Pröbstel A-K. Therapeutic targeting of gut-originating regulatory B cells in neuroinflammatory diseases. European Journal of Immunology. 2023;53(11):2250033.
- Martini E, Kunderfranco P, Peano C, Carullo P, Cremonesi M, Schorn T, et al. Single-Cell Sequencing of Mouse Heart Immune Infiltrate in Pressure Overload-Driven Heart Failure Reveals Extent of Immune Activation. Circulation. 2019 Dec;140(25):2089-107.
- Litviňuková M, Talavera-López C, Maatz H, Reichart D, Worth CL, Lindberg EL, et al. Cells of the adult human heart. Nature. 2020;588(7838):466-72.
- Bermea KC, Kostelecky N, Rousseau ST, Lin C-Y, Adamo L. The human myocardium harbors a population of naive B-cells with a distinctive gene expression signature conserved across species. Front Immunol. 2022 Sep;13. DOI: 10.3389/fimmu.2022.973211
- 30 Kanemaru K, Cranley J, Muraro D, Miranda AMA, Ho SY, Wilbrey-Clark A, et al. Spatially resolved multiomics of human cardiac niches. Nature. 2023;619(7971):801-10.
- Bermea KC, Duque C, Cohen CD, Bhalodia A, Rousseau S, Lovell J, et al. Myocardial B cells have specific gene expression and predicted interactions in dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy. Front Immunol. 2024 Apr; 15. DOI: 10.3389/fimmu. 2024. 1327372
- Winter N de, Ji J, Sintou A, Forte E, Lee M, Noseda M, et al. Persistent transcriptional changes in cardiac adaptive immune cells following myocardial infarction: New evidence from the re-analysis of publicly available single cell and nuclei RNA-sequencing data sets. Journal of Molecular and Cellular Cardiology. 2024 Jul;192:48-64.
- Tan Y, Duan X, Wang B, Liu X, Zhan Z. Murine neonatal cardiac B cells promote cardiomyocyte proliferation and heart regeneration. npj Regen Med. 2023 Feb;8(1):7.
- Rocha-Resende C, Yang W, Li W, Kreisel D, Adamo L, Mann DL. Developmental changes in myocardial B cells mirror changes in B cells associated with different organs. JCI Insight. 5(16):e139377.
- Adamo L, Rocha-Resende C, Mann DL. The Emerging Role of B Lymphocytes in Cardiovascular Disease. Annu Rev Immunol. 2020 Apr;38:99-121.
- 36 Fernandez DM, Rahman AH, Fernandez NF, Chudnovskiy A, Amir ED, Amadori L, et al. Single-cell immune landscape of human atherosclerotic plaques. Nat Med. 2019 Oct;25(10):1576-88.
- Cohen L, Sharp S, Kulczycki A. Human monocytes, B lymphocytes, and non-B lymphocytes each have structurally unique Fc gamma receptors. J Immunol. 1983 Jul;131(1):378-83.
- Rossetti RAM, Lorenzi NPC, Yokochi K, Rosa MBS de F, Benevides L, Margarido PFR, et al. B lymphocytes can be activated to act as antigen presenting cells to promote anti-tumor responses. PLoS One. 2018;13(7):e0199034.
- Zarifis JH. Atherosclerosis, thrombosis, and inflammatory risk factors, from history and the laboratory to real life. Eur Heart J. 2005 Feb; 26(4):317-8.

Cellular Physiology and Biochemistry Published online: 24 October 2025

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

40 Tsiantoulas D, Sage AP, Mallat Z, Binder CJ. Targeting B cells in atherosclerosis: closing the gap from bench to bedside. Arterioscler Thromb Vasc Biol. 2015 Feb;35(2):296-302.

- 41 Kyaw T, Tay C, Khan A, Dumouchel V, Cao A, To K, et al. Conventional B2 B Cell Depletion Ameliorates whereas Its Adoptive Transfer Aggravates Atherosclerosis. The Journal of Immunology. 2010 Oct;185(7):4410-9.
- Zhu Z-Z, Chen X-H, Wei S-R, Xu J, Wang Y-H, Wu W-J, et al. Role of CD19+ CD5+ CD1d+ Bregs in maintaining 42 the Th17/Treg balance in mice with systemic lupus erythematosus complicated with atherosclerosis. Int I Rheum Dis. 2023 Jun;26(6):1048-57.
- Ait-Oufella H, Herbin O, Bouaziz J-D, Binder CJ, Uyttenhove C, Laurans L, et al. B cell depletion reduces the development of atherosclerosis in mice. Journal of Experimental Medicine. 2010 Jul;207(8):1579-87.
- Hilgendorf I, Theurl I, Gerhardt LMS, Robbins CS, Weber GF, Gonen A, et al. Innate response activator B cells aggravate atherosclerosis by stimulating T helper-1 adaptive immunity. Circulation. 2014 Apr;129(16):1677-87.
- 45 Qian J, Gao Y, Lai Y, Ye Z, Yao Y, Ding K, et al. Single-Cell RNA Sequencing of Peripheral Blood Mononuclear Cells From Acute Myocardial Infarction. Front Immunol. 2022 Jun;13:908815.
- 46 Casarotti ACA, Teixeira D, Longo-Maugeri IM, Ishimura ME, Coste MER, Bianco HT, et al. Role of B lymphocytes in the infarcted mass in patients with acute myocardial infarction. Biosci Rep. 2021 Feb;41(2):BSR20203413.
- O'Donohoe TJ, Schrale RG, Sikder S, Surve N, Rudd D, Ketheesan N. Significance of Anti-Myosin Antibody Formation in Patients With Myocardial Infarction: A Prospective Observational Study. Heart, Lung and Circulation. 2019 Apr;28(4):583-90.
- Tan M, Ma J, Yang X, You O, Guo X, Li Y, et al. Quantitative proteomics reveals differential immunoglobulinassociated proteome (IgAP) in patients of acute myocardial infarction and chronic coronary syndromes. Journal of Proteomics. 2022 Feb;252:104449.
- Mo F, Luo Y, Yan Y, Li J, Lai S, Wu W. Are activated B cells involved in the process of myocardial fibrosis after acute myocardial infarction? An in vivo experiment. BMC Cardiovasc Disord. 2021 Jan;21:5.
- Heinrichs M, Ashour D, Siegel J, Büchner L, Wedekind G, Heinze KG, et al. The healing myocardium mobilizes a distinct B-cell subset through a CXCL13-CXCR5-dependent mechanism. Cardiovascular Research. 2021 Nov;117(13):2664-76.
- Zhang M, Michael LH, Grosjean SA, Kelly RA, Carroll MC, Entman ML. The role of natural IgM in myocardial ischemia-reperfusion injury. Journal of Molecular and Cellular Cardiology. 2006 Jul;41(1):62-7.
- 52 Sun Y, Pinto C, Camus S, Duval V, Alayrac P, Zlatanova I, et al. Splenic Marginal Zone B Lymphocytes Regulate Cardiac Remodeling After Acute Myocardial Infarction in Mice. JACC. 2022 Feb;79(7):632-47.
- Goodchild TT, Robinson KA, Pang W, Tondato F, Cui J, Arrington J, et al. Bone Marrow-Derived B Cells Preserve Ventricular Function After Acute Myocardial Infarction. IACC: Cardiovascular Interventions. 2009 Oct;2(10):1005-16.
- Huang F, Zhang J, Zhou H, Ou T, Wang Y, Jiang K, et al. B cell subsets contribute to myocardial protection by inducing neutrophil apoptosis after ischemia and reperfusion. JCI Insight. 2024 Feb;9(4):e167201.
- Kologrivova I, Shtatolkina M, Suslova T, Ryabov V. Cells of the Immune System in Cardiac Remodeling: Main Players in Resolution of Inflammation and Repair After Myocardial Infarction. Front Immunol. 2021 Apr;12:664457.
- Volodarsky I, Shimoni S, Haberman D, Mirkin V, Fabrikant Y, Yoskovich Mashriki T, et al. Circulating Regulatory B-Lymphocytes in Patients with Acute Myocardial Infarction: A Pilot Study. J Cardiovasc Dev Dis. 2022 Dec;10(1):2.
- Wu L, Dalal R, Cao CD, Postoak JL, Yang G, Zhang Q, et al. IL-10-producing B cells are enriched in murine pericardial adipose tissues and ameliorate the outcome of acute myocardial infarction. Proc Natl Acad Sci U S A. 2019 Oct;116(43):21673-84.
- Inaba A, Tuong ZK, Zhao TX, Stewart AP, Mathews R, Truman L, et al. Low-dose IL-2 enhances the generation of IL-10-producing immunoregulatory B cells. Nat Commun. 2023 Apr;14:2071.
- Xu Y, Jiang K, Chen F, Qian J, Wang D, Wu Y, et al. Bone marrow-derived naïve B lymphocytes improve heart function after myocardial infarction: a novel cardioprotective mechanism for empagliflozin. Basic Res Cardiol. 2022 Sep;117(1):47.
- 60 Nikolaou PE, Konijnenberg LSF, Kostopoulos IV, Miliotis M, Mylonas N, Georgoulis A, et al. Empagliflozin in Acute Myocardial Infarction Reduces No-Reflow and Preserves Cardiac Function by Preventing Endothelial Damage. JACC: Basic to Translational Science. 2025 Jan;10(1):43-61.

Cellular Physiology and Biochemistry Published online: 24 October 2025

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

- 61 Nikolaou PE, Mylonas N, Makridakis M, Makrecka-Kuka M, Iliou A, Zerikiotis S, et al. Cardioprotection by selective SGLT-2 inhibitors in a non-diabetic mouse model of myocardial ischemia/reperfusion injury: a class or a drug effect? Basic Res Cardiol. 2022 May;117(1):27.
- Andreadou I, Bell RM, Bøtker HE, Zuurbier CJ. SGLT2 inhibitors reduce infarct size in reperfused ischemic heart and improve cardiac function during ischemic episodes in preclinical models. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2020 Jul;1866(7):165770.
- Mylonas N, Nikolaou PE, Siokatas G, Kostopoulos IV, Tsitsilonis O, Drosatos K, et al. Empagliflozin restores cardiac metabolism and suppresses immune activation in acute myocardial infarction. Atherosclerosis. 2025 Aug; 407. DOI: 10.1016/j.atherosclerosis.2025.120404
- Zhu Y, Zhang Q, Wang Y, Liu W, Zeng S, Yuan Q, et al. Identification of Necroptosis and Immune Infiltration 64 in Heart Failure Through Bioinformatics Analysis, I Inflamm Res. 2025 Feb; 18:2465-81.
- Sintou A, Mansfield C, Iacob A, Chowdhury RA, Narodden S, Rothery SM, et al. Mediastinal Lymphadenopathy, Class-Switched Auto-Antibodies and Myocardial Immune-Complexes During Heart Failure in Rodents and Humans. Front Cell Dev Biol. 2020 Aug;8:695.
- Martini E, Kunderfranco P, Peano C, Carullo P, Cremonesi M, Schorn T, et al. Single-Cell Sequencing of Mouse Heart Immune Infiltrate in Pressure Overload-Driven Heart Failure Reveals Extent of Immune Activation. Circulation. 2019 Dec;140(25):2089-107.
- 67 Smolgovsky S, Bayer AL, Aronovitz M, Vanni KMM, Kirabo A, Harrison DG, et al. Experimental pressure overload induces a cardiac neoantigen specific humoral immune response. Journal of Molecular and Cellular Cardiology. 2025 Apr; 201:87-93.
- Feng Y, Yang Y, Yang H, Shan J, Zhang J, Chen Q, et al. Spleen-Heart Cross-Talk Through CD23-Mediated Signal Promotes Cardiac Remodeling. Circulation Research. 2025 Jun;137(1):83–102.
- 69 Guzik TJ, Nosalski R, Maffia P, Drummond GR. Immune and inflammatory mechanisms in hypertension. Nat Rev Cardiol. 2024 Jun; 21(6): 396-416.
- 70 Chan CT, Sobey CG, Lieu M, Ferens D, Kett MM, Diep H, et al. Obligatory Role for B Cells in the Development of Angiotensin II-Dependent Hypertension. Hypertension. 2015 Nov;66(5):1023-33.
- Chen Y, Dale BL, Alexander MR, Xiao L, Ao M, Pandey AK, et al. Class switching and high-affinity immunoglobulin G production by B cells is dispensable for the development of hypertension in mice. Cardiovasc Res. 2021 Mar;117(4):1217-28.
- 72 Cordero-Reyes AM, Youker KA, Trevino AR, Celis R, Hamilton DJ, Flores-Arredondo JH, et al. Full Expression of Cardiomyopathy Is Partly Dependent on B-Cells: A Pathway That Involves Cytokine Activation, Immunoglobulin Deposition, and Activation of Apoptosis. J Am Heart Assoc. 2016 Jan;5(1):e002484.
- van den Hoogen P, de Jager SCA, Huibers MMH, Schoneveld AH, Puspitasari YM, Valstar GB, et al. Increased circulating IgG levels, myocardial immune cells and IgG deposits support a role for an immune response in pre- and end-stage heart failure. J Cell Mol Med. 2019 Nov;23(11):7505-16.
- Filipp M, Ge Z-D, DeBerge M, Lantz C, Glinton K, Gao P, et al. Myeloid Fatty Acid Metabolism Activates Neighboring Hematopoietic Stem Cells to Promote Heart Failure With Preserved Ejection Fraction. Circulation. 2025 May;151(20):1451-66.
- 75 Jheng J-R, DesJardin JT, Chen Y-Y, Huot JR, Bai Y, Cook T, et al. Plasma Proteomics Identifies B2M as a Regulator of Pulmonary Hypertension in Heart Failure With Preserved Ejection Fraction. Arterioscler Thromb Vasc Biol. 2024 Jul;44(7):1570-83.
- Guo X, Huang C, Zhang L, Hu G, Du Y, Chen X, et al. Lymphatic Endothelial Branched-Chain Amino Acid Catabolic Defects Undermine Cardiac Lymphatic Integrity and Drive HFpEF. Circulation. 2025 Jun;151(23):1651-66.
- El-Cheikh J, Moukalled N, Malard F, Bazarbachi A, Mohty M. Cardiac toxicities in multiple myeloma: an updated and a deeper look into the effect of different medications and novel therapies. Blood Cancer J. 2023 May;13(1):83.
- Fontes Oliveira M, Naaktgeboren WR, Hua A, Ghosh AK, Oakervee H, Hallam S, et al. Optimising cardiovascular care of patients with multiple myeloma. Heart. 2021 Nov;107(22):1774-82.
- Piedra K, Peterson T, Tan C, Orozco J, Hultcrantz M, Hassoun H, et al. Comparison of venous thromboembolism incidence in newly diagnosed multiple myeloma patients receiving bortezomib, lenalidomide, dexamethasone (RVD) or carfilzomib, lenalidomide, dexamethasone (KRD) with aspirin or rivaroxaban thromboprophylaxis. Br J Haematol. 2022 Jan;196(1):105-9.

Cellular Physiology and Biochemistry Published online: 24 October 2025

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

80 Huang H, Li H, Li D. Effect of serum monoclonal protein concentration on haemostasis in patients with multiple myeloma. Blood Coagulation & Fibrinolysis. 2015 Jul;26(5):555-9.

- 81 Das A, Dasgupta S, Gong Y, Shah UA, Fradley MG, Cheng RK, et al. Cardiotoxicity as an adverse effect of immunomodulatory drugs and proteasome inhibitors in multiple myeloma: A network meta-analysis of randomized clinical trials. Hematological Oncology. 2022 Apr;40(2):233-42.
- 82 Rahman MR, Ball S, Paz P, Elmassry M, Vutthikraivit W, Bandyopadhyay D, et al. Heart Failure with Carfilzomib in Patients with Multiple Myeloma: A Meta-analysis of Randomized Controlled Trials. Journal of Cardiac Failure. 2021 May;27(5):610-2.
- Leleu X, Rodon P, Hulin C, Daley L, Dauriac C, Hacini M, et al. MELISSE, a large multicentric observational study to determine risk factors of venous thromboembolism in patients with multiple myeloma treated with immunomodulatory drugs. Thromb Haemost. 2013;110(10):844-51.
- Bradbury CA, Craig Z, Cook G, Pawlyn C, Cairns DA, Hockaday A, et al. Thrombosis in patients with myeloma treated in the Myeloma IX and Myeloma XI phase 3 randomized controlled trials. Blood. 2020 Aug;136(9):1091-104.
- 85 Lefebvre V, Du O, Baird S, Ng AC-H, Nascimento M, Campanella M, et al. Genome-wide RNAi screen identifies ATPase inhibitory factor 1 (ATPIF1) as essential for PARK2 recruitment and mitophagy. Autophagy. 2013 Nov;9(11):1770-9.
- 86 Munir M, Sayed A, Addison D, Epperla N. Cardiovascular toxicities associated with novel cellular immune therapies. Blood Advances. 2024 Dec;8(24):6282-96.
- Palumbo A, Palladino C. Venous and arterial thrombotic risks with thalidomide: evidence and practical guidance. Therapeutic Advances in Drug Safety. 2012 Oct;3(5):255-66.
- Rajkumar SV, Jacobus S, Callander NS, Fonseca R, Vesole DH, Williams ME, et al. Lenalidomide plus highdose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. The Lancet Oncology. 2010 Jan;11(1):29-37.
- Hultcrantz M, Pfeiffer RM, Björkholm M, Goldin LR, Turesson I, Schulman S, et al. Elevated risk of venous but not arterial thrombosis in Waldenström macroglobulinemia/lymphoplasmacytic lymphoma. Journal of Thrombosis and Haemostasis. 2014 Nov;12(11):1816-21.
- Kwaan HC. Hyperviscosity in plasma cell dyscrasias. Clinical Hemorheology and Microcirculation. 2013 Aug;55(1):75-83.
- 91 Reinhart WH, Lutolf O, Nydegger UR, Mahler F, Straub PW. Plasmapheresis for hyperviscosity syndrome in macroglobulinemia Waldenström and multiple myeloma: influence on blood rheology and the microcirculation. J Lab Clin Med. 1992 Jan;119(1):69-76.
- Falanga A, Marchetti M, Russo L. Venous thromboembolism in the hematologic malignancies. Curr Opin Oncol. 2012 Nov;24(6):702-10.
- 93 Auwerda JJA, Sonneveld P, de Maat MPM, Leebeek FWG. Prothrombotic coagulation abnormalities in patients with paraprotein-producing B-cell disorders. Clin Lymphoma Myeloma. 2007 Jul;7(7):462-6.
- Falanga A, Marchetti M. Anticancer treatment and thrombosis. Thrombosis Research. 2012 Mar;129(3):353-9.
- 95 Kyle RA, Durie BGM, Rajkumar SV, Landgren O, Blade J, Merlini G, et al. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia. 2010 Jun;24(6):1121-7.
- Rögnvaldsson S, Love TJ, Thorsteinsdottir S, Reed ER, Óskarsson JÞ, Pétursdóttir Í, et al. Iceland screens, treats, or prevents multiple myeloma (iStopMM): a population-based screening study for monoclonal gammopathy of undetermined significance and randomized controlled trial of follow-up strategies. Blood Cancer J. 2021 May;11(5):94.
- 97 Kristinsson SY, Pfeiffer RM, Björkholm M, Goldin LR, Schulman S, Blimark C, et al. Arterial and venous thrombosis in monoclonal gammopathy of undetermined significance and multiple myeloma: a populationbased study. Blood. 2010 Jun;115(24):4991-8.
- Schwartz B, Schou M, Ruberg FL, Rucker D, Choi J, Siddiqi O, et al. Cardiovascular Morbidity in Monoclonal Gammopathy of Undetermined Significance, JACC: CardioOncology, 2022 Sep;4(3):313-22.
- 99 Rögnvaldsson S, Gasparini A, Thorsteinsdottir S, Sverrisdottir I, Eythorsson E, Long TE, et al. Monoclonal gammopathy of undetermined significance and the risk of thrombotic events: Results from iStopMM, a prospective population-based screening study. Br J Haematol. 2025 Mar; 206(3):899-906.

Cellular Physiology and Biochemistry Published online: 24 October 2025

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

100 Nielsen T, Kristensen SR, Gregersen H, Teodorescu EM, Pedersen S. Prothrombotic abnormalities in patients with multiple myeloma and monoclonal gammopathy of undetermined significance. Thromb Res. 2021 Jun; 202: 108-18.

- 101 O'Sullivan LR, Meade-Murphy G, Gilligan OM, Mykytiv V, Young PW, Cahill MR. Platelet hyperactivation in multiple myeloma is also evident in patients with premalignant monoclonal gammopathy of undetermined significance. Br J Haematol. 2021 Jan;192(2):322-32.
- 102 Gkalea V, Fotiou D, Dimopoulos MA, Kastritis E. Monoclonal Gammopathy of Thrombotic Significance. Cancers (Basel). 2023 Jan; 15(2): 480.
- 103 Salmasi G, Murray DL, Padmanabhan A. Myeloma Therapy for Monoclonal Gammopathy of Thrombotic Significance. N Engl J Med. 2024 Aug; 391(6):570-1.
- 104 Kanack AJ, Leung N, Padmanabhan A. Diagnostic Complexity in Monoclonal Gammopathy of Thrombotic Significance. N Engl J Med. 2024 Nov;391(20):1961-3.
- 105 Sanchorawala V. Light-Chain (AL) Amyloidosis: Diagnosis and Treatment. CJASN. 2006 Jan;1(6):1331-41.
- 106 Gertz MA. Immunoglobulin light chain amyloidosis: 2020 update on diagnosis, prognosis, and treatment. Am J Hematol. 2020 Jul; 95(7):848-60.
- 107 Imperlini E, Gnecchi M, Rognoni P, Sabidò E, Ciuffreda MC, Palladini G, et al. Proteotoxicity in cardiac amyloidosis: amyloidogenic light chains affect the levels of intracellular proteins in human heart cells. Sci Rep. 2017 Nov;7(1):15661.
- 108 Liao R, Jain M, Teller P, Connors LH, Ngoy S, Skinner M, et al. Infusion of light chains from patients with cardiac amyloidosis causes diastolic dysfunction in isolated mouse hearts. Circulation. 2001 Oct:104(14):1594-7.
- 109 Brenner DA, Jain M, Pimentel DR, Wang B, Connors LH, Skinner M, et al. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ Res. 2004 Apr:94(8):1008-10.
- 110 Mishra S, Guan J, Plovie E, Seldin DC, Connors LH, Merlini G, et al. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish. Am J Physiol Heart Circ Physiol. 2013 Jul;305(1):H95-103.
- 111 Guan J, Mishra S, Shi J, Plovie E, Qiu Y, Cao X, et al. Stanniocalcin1 is a key mediator of amyloidogenic light chain induced cardiotoxicity. Basic Res Cardiol. 2013 Sep;108(5):378.
- 112 Shi J, Guan J, Jiang B, Brenner DA, del Monte F, Ward JE, et al. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38α MAPK pathway. Proc Natl Acad Sci U S A. 2010 Mar; 107(9): 4188-93.
- 113 Lavatelli F, Imperlini E, Orrù S, Rognoni P, Sarnataro D, Palladini G, et al. Novel mitochondrial protein interactors of immunoglobulin light chains causing heart amyloidosis. FASEB J. 2015 Nov;29(11):4614-28.
- 114 Bellofatto IA, Nikolaou PE, Andreadou I, Canepa M, Carbone F, Ghigo A, et al. Mechanisms of damage and therapies for cardiac amyloidosis: a role for inflammation? Clin Res Cardiol. 2024 Aug DOI: 10.1007/ s00392-024-02522-2
- 115 Nikolaou PE, Georgoulis A, Papanikolaou A, Baltatzis G, Liacos C, Makridakis M, et al. Cardiotoxicity in light chain amyloidosis: Insights from the first murine model with intramyocardial injection of patient-derived amyloidogenic light chains. European Heart Journal. 2023 Nov;44(Supplement_2):ehad655.712.
- 116 Ansell SM, Armitage J. Non-Hodgkin Lymphoma: Diagnosis and Treatment. Mayo Clinic Proceedings. 2005 Aug;80(8):1087-97.
- 117 Kekre N, Connors JM. Venous thromboembolism incidence in hematologic malignancies. Blood Reviews. 2019 Jan; 33: 24-32.
- 118 Park LC, Woo S, Kim S, Jeon H, Ko YH, Kim SJ, et al. Incidence, risk factors and clinical features of venous thromboembolism in newly diagnosed lymphoma patients: Results from a prospective cohort study with Asian population. Thrombosis Research. 2012 Sep;130(3):e6-12.
- 119 Stark K, Kilani B, Stockhausen S, Busse J, Schubert I, Tran T-D, et al. Antibodies and complement are key drivers of thrombosis. Immunity. 2024 Sep;57(9):2140-2156.e10.
- 120 Salz T, Zabor EC, De Nully Brown P, Dalton SO, Raghunathan NJ, Matasar MJ, et al. Preexisting Cardiovascular Risk and Subsequent Heart Failure Among Non-Hodgkin Lymphoma Survivors. JCO. 2017 Dec;35(34):3837-43.
- 121 Doolub G, Raichman A, Abramov D, Bang V, Parwani P, Karunanithi K, et al. Temporal trends in cardiovascular mortality among patients with hematological malignancies: a 20-year perspective. Expert Review of Cardiovascular Therapy. 2025 Feb;23(1-2):35-43.

Cellular Physiology and Biochemistry Published online: 24 October 2025

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

122 Bjerring AW, Smeland KH, Stokke T, Haugaa KH, Holte E, Rösner A, et al. Long-term cardiac effects of modern treatment for Hodgkin's lymphoma. Cardio-Oncology. 2024 Apr;10(1):19.

- 123 Hodgson DC. Long-term toxicity of chemotherapy and radiotherapy in lymphoma survivors: optimizing treatment for individual patients. Clin Adv Hematol Oncol. 2015 Feb;13(2):103-12.
- 124 Belizaire R, Wong WJ, Robinette ML, Ebert BL. Clonal haematopoiesis and dysregulation of the immune system. Nat Rev Immunol. 2023 Sep;23(9):595-610.
- 125 Ahmad H, Jaiswal S. Clonal haematopoiesis and atherosclerotic cardiovascular disease. Nat Rev Cardiol. 2023 Jul; 20(7): 437-8.
- 126 Marston NA, Pirruccello JP, Melloni GEM, Kamanu F, Bonaca MP, Giugliano RP, et al. Clonal hematopoiesis, cardiovascular events and treatment benefit in 63, 700 individuals from five TIMI randomized trials. Nat Med. 2024 Sep;30(9):2641-7.
- 127 Weiner GJ. Rituximab: mechanism of action. Semin Hematol. 2010 Apr;47(2):115–23.
- 128 Zhang X, Sun Y, Wang N, Zhang Y, Xia Y, Liu Y. Immunomodulatory Treatment Strategies Targeting B Cells for Heart Failure. Front Pharmacol. 2022 Mar; 13:854592.
- 129 Giudice V, Vecchione C, Selleri C. Cardiotoxicity of Novel Targeted Hematological Therapies. Life. 2020 Dec;10(12):344.
- 130 Ma X-L, Lin Q-Y, Wang L, Xie X, Zhang Y-L, Li H-H. Rituximab prevents and reverses cardiac remodeling by depressing B cell function in mice. Biomed Pharmacother. 2019 Jun;114:108804.
- 131 Tschöpe C, Van Linthout S, Spillmann F, Posch MG, Reinke P, Volk H-D, et al. Targeting CD20+ B-lymphocytes in inflammatory dilated cardiomyopathy with rituximab improves clinical course; a case series. Eur Heart J Case Rep. 2019 Jul;3(3):ytz131.
- 132 Zhao TX, Aetesam-Ur-Rahman M, Sage AP, Victor S, Kurian R, Fielding S, et al. Rituximab in patients with acute ST-elevation myocardial infarction: an experimental medicine safety study. Cardiovasc Res. 2021 Mar;118(3):872-82.
- 133 O'Brien JW, Case A, Kemper C, Zhao TX, Mallat Z. Therapeutic Avenues to Modulate B-Cell Function in Patients With Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology. 2024 Jul;44(7):1512-22.
- 134 Kridin K, Mruwat N, Ludwig RJ. Association of Rituximab With Risk of Long-term Cardiovascular and Metabolic Outcomes in Patients With Pemphigus. JAMA Dermatology. 2023 Jan;159(1):56-61.
- 135 Wei W, Graeff R, Yue J. Roles and mechanisms of the CD38/cyclic adenosine diphosphate ribose/Ca2+ signaling pathway. World J Biol Chem. 2014 Feb;5(1):58-67.
- 136 Dimopoulos M, Quach H, Mateos M-V, Landgren O, Leleu X, Siegel D, et al. Carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone for patients with relapsed or refractory multiple myeloma (CANDOR): results from a randomised, multicentre, open-label, phase 3 study. The Lancet. 2020 Jul;396(10245):186-97.
- 137 Kastritis E, Palladini G, Minnema MC, Wechalekar AD, Jaccard A, Lee HC, et al. Daratumumab-Based Treatment for Immunoglobulin Light-Chain Amyloidosis. New England Journal of Medicine. 2021 Jul;385(1):46-58.
- 138 Zuo W, Liu N, Zeng Y, Liu Y, Li B, Wu K, et al. CD38: A Potential Therapeutic Target in Cardiovascular Disease. Cardiovasc Drugs Ther. 2021 Aug;35(4):815-28.
- 139 Hogan KA, Chini CCS, Chini EN. The Multi-faceted Ecto-enzyme CD38: Roles in Immunomodulation, Cancer, Aging, and Metabolic Diseases. Front Immunol. 2019 May; 10. DOI: 10.3389/fimmu.2019.01187
- 140 Tannous C, Booz GW, Altara R, Muhieddine DH, Mericskay M, Refaat MM, et al. Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases. Acta Physiologica. 2021;231(3):e13551.
- 141 Zhao L, Wang B, Zhang W, Sun L. Effect of miR-499a-5p on damage of cardiomyocyte induced by hypoxiareoxygenation via downregulating CD38 protein. Journal of Cellular Biochemistry. 2020;121(2):996-1004.
- 142 Boslett J, Reddy N, Alzarie YA, Zweier JL. Inhibition of CD38 with the Thiazologuin(az)olin(on)e 78c Protects the Heart against Postischemic Injury. J Pharmacol Exp Ther. 2019 Apr;369(1):55-64.
- 143 Wang L-F, Huang C-C, Xiao Y-F, Guan X-H, Wang X-N, Cao Q, et al. CD38 Deficiency Protects Heart from High Fat Diet-Induced Oxidative Stress Via Activating Sirt3/FOXO3 Pathway. Cellular Physiology and Biochemistry. 2018 Aug; 48(6): 2350-63.
- 144 Barachini S, Buda G, Petrini I. Cardiovascular Toxicity of Antineoplastic Treatments in Hematological Diseases: Focus on Molecular Mechanisms to Improve Therapeutic Management. Journal of Clinical Medicine. 2024 Jan;13(6):1574.

Cellular Physiology and Biochemistry Published online: 24 October 2025

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

145 Terpos E, Stamatelopoulos K, Makris N, Georgiopoulos G, Ntanasis-Stathopoulos I, Gavriatopoulou M, et al. Daratumumab May Attenuate Cardiac Dysfunction Related to Carfilzomib in Patients with Relapsed/ Refractory Multiple Myeloma: A Prospective Study. Cancers. 2021 Jan;13(20):5057.

- 146 Minnema MC, Dispenzieri A, Merlini G, Comenzo RL, Kastritis E, Wechalekar AD, et al. Outcomes by Cardiac Stage in Patients With Newly Diagnosed AL Amyloidosis, JACC: CardioOncology, 2022 Nov;4(4):474-87.
- 147 El-Cheikh J, Moukalled N, Malard F, Bazarbachi A, Mohty M. Cardiac toxicities in multiple myeloma: an updated and a deeper look into the effect of different medications and novel therapies. Blood Cancer I. 2023 May;13(1):1-10.
- 148 Dimopoulos M, Bringhen S, Anttila P, Capra M, Cavo M, Cole C, et al. Isatuximab as monotherapy and combined with dexamethasone in patients with relapsed/refractory multiple myeloma. Blood. 2021 Mar;137(9):1154-65.
- 149 Moreau P, Dimopoulos M-A, Mikhael J, Yong K, Capra M, Facon T, et al. Isatuximab, carfilzomib, and dexamethasone in relapsed multiple myeloma (IKEMA): a multicentre, open-label, randomised phase 3 trial. The Lancet. 2021 Jun; 397(10292): 2361-71.
- 150 Clark EA, Giltiay NV. CD22: A Regulator of Innate and Adaptive B Cell Responses and Autoimmunity. Front Immunol. 2018 Sep;9:2235.
- 151 Cordero-Reyes AM, Youker KA, Trevino AR, Celis R, Hamilton DJ, Flores-Arredondo JH, et al. Full Expression of Cardiomyopathy Is Partly Dependent on B-Cells: A Pathway That Involves Cytokine Activation, Immunoglobulin Deposition, and Activation of Apoptosis. Journal of the American Heart Association. 2016 Jan;5(1):e002484.
- 152 Porsch F, Binder CJ. Impact of B-Cell-Targeted Therapies on Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology. 2019 Sep;39(9):1705-14.
- 153 Lorenzetti R, Janowska I, Smulski CR, Frede N, Henneberger N, Walter L, et al. Abatacept modulates CD80 and CD86 expression and memory formation in human B-cells. J Autoimmun. 2019 Jul; 101:145-52.
- 154 Alenazy MF, Saheb Sharif-Askari F, Omair MA, El-Wetidy MS, Omair MA, Mitwalli H, et al. Abatacept enhances blood regulatory B cells of rheumatoid arthritis patients to a level that associates with disease remittance. Sci Rep. 2021 Mar;11(1):5629.
- 155 Carvajal Alegria G, Cornec D, Saraux A, Devauchelle-Pensec V, Jamin C, Hillion S, et al. Abatacept Promotes Regulatory B Cell Functions, Enhancing Their Ability to Reduce the Th1 Response in Rheumatoid Arthritis Patients through the Production of IL-10 and TGF-β. J Immunol. 2021 Jul; 207(2): 470-82.
- 156 Kang EH, Jin Y, Brill G, Lewey J, Patorno E, Desai RJ, et al. Comparative Cardiovascular Risk of Abatacept and Tumor Necrosis Factor Inhibitors in Patients With Rheumatoid Arthritis With and Without Diabetes Mellitus: A Multidatabase Cohort Study. Journal of the American Heart Association. 2018 Feb;7(3):e007393.
- 157 Jin Y, Kang EH, Brill G, Desai RJ, Kim SC. Cardiovascular (CV) Risk after Initiation of Abatacept versus TNF Inhibitors in Rheumatoid Arthritis Patients with and without Baseline CV Disease. J Rheumatol. 2018 Aug;45(9):1240-8.
- 158 Yamada Z, Muraoka S, Kawazoe M, Hirose W, Kono H, Yasuda S, et al. Long-term effects of abatacept on atherosclerosis and arthritis in older vs. younger patients with rheumatoid arthritis: 3-year results of a prospective, multicenter, observational study. Arthritis Research & Therapy. 2024 Apr;26(1):87.
- 159 Ewing MM, Karper JC, Abdul S, de Jong RCM, Peters HAB, de Vries MR, et al. T-cell co-stimulation by CD28-CD80/86 and its negative regulator CTLA-4 strongly influence accelerated atherosclerosis development. International Journal of Cardiology. 2013 Oct;168(3):1965-74.
- 160 Verma VK, Mutneja E, Malik S, Sahu AK, Prajapati V, Bhardwaj P, et al. Abatacept: A Promising Repurposed Solution for Myocardial Infarction-Induced Inflammation in Rat Models. Oxidative Medicine and Cellular Longevity. 2024;2024(1):3534104.
- 161 Shah N, Chari A, Scott E, Mezzi K, Usmani SZ. B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia. 2020 Apr;34(4):985-1005.
- 162 Hungria V, Robak P, Hus M, Zherebtsova V, Ward C, Ho PJ, et al. Belantamab Mafodotin, Bortezomib, and Dexamethasone for Multiple Myeloma. New England Journal of Medicine. 2024 Jul;391(5):393-407.
- 163 Dileo R, Mewawalla P, Babu K, Yin Y, Strouse C, Chen E, et al. A real-world experience of efficacy and safety of belantamab mafodotin in relapsed refractory multiple myeloma. Blood Cancer J. 2025 Mar; 15(1):1-5.
- 164 Jewell RC, Mills RJ, Farrell C, Visser SAG. Belantamab mafodotin concentration-QTc relationships in patients with relapsed or refractory multiple myeloma from the DREAMM-1 and -2 studies. British Journal of Clinical Pharmacology. 2024;90(10):2571-81.

Cellular Physiology and Biochemistry Published online: 24 October 2025

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

Ntanasis-Stathopoulos I, Malandrakis P, Fotiou D, Migkou M, Theodorakakou F, Roussou M, et al. Real-World Effectiveness and Safety of Belantamab Mafodotin Monotherapy in Triple-Class Refractory Multiple Myeloma. International Journal of Molecular Sciences. 2023 Jan;24(14):11829.

- 166 Smulski CR, Eibel H. BAFF and BAFF-Receptor in B Cell Selection and Survival. Front Immunol. 2018 Oct;9. DOI: 10.3389/fimmu.2018.02285
- 167 Sage AP, Tsiantoulas D, Baker L, Harrison J, Masters L, Murphy D, et al. BAFF Receptor Deficiency Reduces the Development of Atherosclerosis in Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012 Jul;32(7):1573-6.
- 168 Kyaw T, Tay C, Hosseini H, Kanellakis P, Gadowski T, MacKay F, et al. Depletion of B2 but Not B1a B Cells in BAFF Receptor-Deficient ApoE-/- Mice Attenuates Atherosclerosis by Potently Ameliorating Arterial Inflammation. PLoS One. 2012 Jan;7(1):e29371.
- 169 Kyaw T, Cui P, Tay C, Kanellakis P, Hosseini H, Liu E, et al. BAFF Receptor mAb Treatment Ameliorates Development and Progression of Atherosclerosis in Hyperlipidemic ApoE-/- Mice. PLOS ONE. 2013 Apr;8(4):e60430.
- 170 Tsiantoulas D, Sage AP, Göderle L, Ozsvar-Kozma M, Murphy D, Porsch F, et al. B Cell-Activating Factor Neutralization Aggravates Atherosclerosis. Circulation. 2018 Nov;138(20):2263-73.
- 171 Yamato M, Shirai T, Ishii Y, Sato H, Ishii T, Fujii H. Impact of subcutaneous belimumab on disease activity, patient satisfaction, and metabolic profile in long-lasting systemic lupus erythematosus. Clin Rheumatol. 2024 Mar; 43(3):1023-35.
- 172 Liang D, Huang S, Ding R. Effects of belimumab on the lipid profile in systemic lupus erythematosus patients: an observational study. Clin Rheumatol. 2024 Aug;43(8):2513-20.
- 173 Baniaamam M, Voskuyl AE, Nurmohamed MT, Handoko ML. Clinical improvement of cardiac function in a patient with systemic lupus erythematosus and heart failure with preserved ejection fraction treated with belimumab. BMJ Case Rep. 2021 Jan;14(1):e237549.
- 174 Shi X, Cheng X, Jiang A, Shi W, Zhu L, Mou W, et al. Immune Checkpoints in B Cells: Unlocking New Potentials in Cancer Treatment. Advanced Science. 2024;11(47):2403423.
- 175 Bod L, Kye Y-C, Shi J, Triglia ET, Schnell A, Fessler J, et al. B-cell specific checkpoint molecules that regulate anti-tumor immunity. Nature. 2023 Jul;619(7969):348-56.
- 176 Herrmann A, Lahtz C, Nagao T, Song JY, Chan WC, Lee H, et al. CTLA4 Promotes Tyk2-STAT3-Dependent B-cell Oncogenicity. Cancer Research. 2017 Sep;77(18):5118-28.
- 177 Liu H, Wu J, Xu X, Wang H, Zhang C, Yin S, et al. Peritumoral TIGIT+CD20+ B cell infiltration indicates poor prognosis but favorable adjuvant chemotherapeutic response in gastric cancer. International Immunopharmacology. 2022 Jul;108:108735.
- 178 Xiao X, Lao X-M, Chen M-M, Liu R-X, Wei Y, Ouyang F-Z, et al. PD-1hi Identifies a Novel Regulatory B-cell Population in Human Hepatoma That Promotes Disease Progression. Cancer Discovery. 2016 May;6(5):546-59.
- 179 Olkhanud PB, Damdinsuren B, Bodogai M, Gress RE, Sen R, Weiksza K, et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T regulatory cells. Cancer Res. 2011 May;71(10):3505-15.
- 180 Sharma P, Goswami S, Raychaudhuri D, Siddiqui BA, Singh P, Nagarajan A, et al. Immune checkpoint therapy—current perspectives and future directions. Cell. 2023 Apr;186(8):1652-69.
- 181 Ball S, Ghosh RK, Wongsaengsak S, Bandyopadhyay D, Ghosh GC, Aronow WS, et al. Cardiovascular Toxicities of Immune Checkpoint Inhibitors: JACC Review Topic of the Week. Journal of the American College of Cardiology. 2019 Oct;74(13):1714-27.
- 182 Baik AH, Oluwole OO, Johnson DB, Shah N, Salem J-E, Tsai KK, et al. Mechanisms of Cardiovascular Toxicities Associated with Immunotherapies. Circulation Research. 0(0). DOI: 10.1161/CIRCRESAHA.120.315894
- 183 Gergely TG, Kucsera D, Tóth VE, Kovács T, Sayour NV, Drobni ZD, et al. Characterization of immune checkpoint inhibitor-induced cardiotoxicity reveals interleukin-17A as a driver of cardiac dysfunction after anti-PD-1 treatment. British Journal of Pharmacology. n/a(n/a). DOI: 10.1111/bph.15984
- 184 Efentakis P, Choustoulaki A, Kwiatkowski G, Varela A, Kostopoulos IV, Tsekenis G, et al. Early microvascular coronary endothelial dysfunction precedes pembrolizumab-induced cardiotoxicity. Preventive role of high dose of atorvastatin. Basic Res Cardiol. 2025 Feb;120(1):263-86.
- 185 Michel L, Helfrich I, Hendgen-Cotta UB, Mincu R-I, Korste S, Mrotzek SM, et al. Targeting early stages of cardiotoxicity from anti-PD1 immune checkpoint inhibitor therapy. European Heart Journal. 2022 Jan;43(4):316-29.

Cellular Physiology and Biochemistry Published online: 24 October 2025

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

186 Herrmann J. Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nat Rev Cardiol. 2020 Aug;17(8):474-502.

- 187 Flippot R, Teixeira M, Rey-Cardenas M, Carril-Ajuria L, Rainho L, Naoun N, et al. B cells and the coordination of immune checkpoint inhibitor response in patients with solid tumors. J Immunother Cancer. 2024
- 188 Das R, Bar N, Ferreira M, Newman AM, Zhang L, Bailur JK, et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J Clin Invest. 2018 Feb; 128(2):715-20.
- 189 Ganatra S, Dani SS, Yang EH, Zaha VG, Nohria A. Cardiotoxicity of T-Cell Antineoplastic Therapies: JACC: CardioOncology Primer. JACC: CardioOncology. 2022 Dec;4(5):616-23.
- 190 Alvi RM, Frigault MJ, Fradley MG, Jain MD, Mahmood SS, Awadalla M, et al. Cardiovascular Events Among Adults Treated With Chimeric Antigen Receptor T-Cells (CAR-T), JACC. 2019 Dec;74(25):3099-108.
- 191 Maleki S, Esmaeili Z, Seighali N, Shafiee A, Namin SM, Zavareh MAT, et al. Cardiac adverse events after Chimeric Antigen Receptor (CAR) T cell therapies: an updated systematic review and meta-analysis. Cardio-Oncology. 2024 Aug; 10(1):52.
- 192 Joseph T, Sanchez J, Abbasi A, Zhang L, Sica RA, Duong TQ. Cardiotoxic Effects Following CAR-T Cell Therapy: A Literature Review. Curr Oncol Rep. 2025;27(2):135-47.
- 193 Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. The Lancet Oncology. 2019 Jan; 20(1):31-42.
- 194 Schuster SI, Tam CS, Borchmann P, Worel N, McGuirk JP, Holte H, et al. Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): a multicentre, open-label, single-arm, phase 2 study. The Lancet Oncology. 2021 Oct;22(10):1403-15.
- 195 Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. New England Journal of Medicine. 2018 Feb;378(5):439-48.
- 196 Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, et al. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nat Rev Clin Oncol. 2018 Jan; 15(1):47-62.
- 197 Alí A, Boutidir M, Aromolaran AS. Cardiolipotoxicity, Inflammation, and Arrhythmias: Role for Interleukin-6 Molecular Mechanisms. Front Physiol. 2019 Jan; 9. DOI: 10.3389/fphys.2018.01866
- 198 Einsele H, Borghaei H, Orlowski RZ, Subklewe M, Roboz GJ, Zugmaier G, et al. The BiTE (bispecific T-cell engager) platform: Development and future potential of a targeted immuno-oncology therapy across tumor types. Cancer. 2020;126(14):3192-201.
- 199 Kantarjian H, Stein A, Gökbuget N, Fielding AK, Schuh AC, Ribera J-M, et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. New England Journal of Medicine. 2017 Mar;376(9):836-47.
- 200 Georgiopoulos G, Makris N, Laina A, Theodorakakou F, Briasoulis A, Trougakos IP, et al. Cardiovascular Toxicity of Proteasome Inhibitors: Underlying Mechanisms and Management Strategies. JACC CardioOncol. 2023 Feb;5(1):1-21.
- 201 Rousseau A, Bertolotti A. Regulation of proteasome assembly and activity in health and disease. Nat Rev Mol Cell Biol. 2018 Nov;19(11):697-712.
- 202 Sanbe A, Osinska H, Saffitz JE, Glabe CG, Kayed R, Maloyan A, et al. Desmin-related cardiomyopathy in transgenic mice: A cardiac amyloidosis. Proc Natl Acad Sci U S A. 2004 Jul; 101(27):10132-6.
- 203 Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, et al. Ubiquitin Proteasome Dysfunction in Human Hypertrophic and Dilated Cardiomyopathies. Circulation. 2010 Mar;121(8):997-1004.
- 204 Bishnoi R, Xie Z, Shah C, Bian J, Murthy HS, Wingard JR, et al. Real-world experience of carfilzomibassociated cardiovascular adverse events: SEER-Medicare data set analysis. Cancer Med. 2020 Nov;10(1):70-8.
- 205 Dimopoulos MA, Moreau P, Palumbo A, Joshua D, Pour L, Hájek R, et al. Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): a randomised, phase 3, open-label, multicentre study. The Lancet Oncology. 2016 Jan;17(1):27-38.
- 206 Waxman AJ, Clasen S, Hwang W-T, Garfall A, Vogl DT, Carver J, et al. Carfilzomib-Associated Cardiovascular Adverse Events. JAMA Oncol. 2018 Mar;4(3):e174519.

Cellular Physiology and Biochemistry Published online: 24 October 2025

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

207 Fakhri B, Fiala MA, Shah N, Vij R, Wildes TM. Measuring Cardiopulmonary Complications of Carfilzomib Treatment and Associated Risk Factors Using the SEER-Medicare Database. Cancer. 2020 Feb;126(4):808-

- 208 Wu P, Oren O, Gertz MA, Yang EH. Proteasome Inhibitor-Related Cardiotoxicity: Mechanisms, Diagnosis, and Management. Curr Oncol Rep. 2020 Jun;22(7):66.
- 209 Al-Yafeai Z, Ghoweba M, Ananthaneni A, Abduljabar H, Aziz D. Cardiovascular complications of modern multiple myeloma therapy: A pharmacovigilance study. British Journal of Clinical Pharmacology. 2023;89(2):641-8.
- 210 Forghani P, Rashid A, Sun F, Liu R, Li D, Lee MR, et al. Carfilzomib Treatment Causes Molecular and Functional Alterations of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. J Am Heart Assoc. 2021 Dec;10(24):e022247.
- 211 Efentakis P, Kremastiotis G, Varela A, Nikolaou P-E, Papanagnou E-D, Davos CH, et al. Molecular mechanisms of carfilzomib-induced cardiotoxicity in mice and the emerging cardioprotective role of metformin. Blood. 2019 Feb;133(7):710-23.
- 212 Efentakis P, Psarakou G, Varela A, Papanagnou ED, Chatzistefanou M, Nikolaou P-E, et al. Elucidating Carfilzomib's Induced Cardiotoxicity in an In vivo Model of Aging: Prophylactic Potential of Metformin. Int J Mol Sci. 2021 Oct;22(20):10956.
- 213 Tantawy M, Chekka LM, Huang Y, Garrett TJ, Singh S, Shah CP, et al. Lactate Dehydrogenase B and Pyruvate Oxidation Pathway Associated With Carfilzomib-Related Cardiotoxicity in Multiple Myeloma Patients: Result of a Multi-Omics Integrative Analysis. Front Cardiovasc Med. 2021 Apr;8. DOI: 10.3389/ fcvm.2021.645122
- 214 Nguyen MN, Nayernama A, Jones SC, Kanapuru B, Gormley N, Waldron PE. Proteasome inhibitor-associated thrombotic microangiopathy: A review of cases reported to the FDA adverse event reporting system and published in the literature. American Journal of Hematology. 2020;95(9):E218-22.
- 215 Stangl V, Lorenz M, Meiners S, Ludwig A, Bartsch C, Moobed M, et al. Long-term up-regulation of eNOS and improvement of endothelial function by inhibition of the ubiquitin-proteasome pathway. The FASEB Journal. 2004;18(2):272-9.
- 216 Ludwig A, Fechner M, Wilck N, Meiners S, Grimbo N, Baumann G, et al. Potent anti-inflammatory effects of low-dose proteasome inhibition in the vascular system. J Mol Med. 2009 Aug;87(8):793–802.
- 217 Meiners S, Dreger H, Fechner M, Bieler S, Rother W, Günther C, et al. Suppression of Cardiomyocyte Hypertrophy by Inhibition of the Ubiquitin-Proteasome System. Hypertension. 2008 Feb;51(2):302-8.
- 218 Meiners S, Ludwig A, Lorenz M, Dreger H, Baumann G, Stangl V, et al. Nontoxic proteasome inhibition activates a protective antioxidant defense response in endothelial cells. Free Radical Biology and Medicine. 2006 Jun; 40(12): 2232-41.
- 219 Lorenz M, Wilck N, Meiners S, Ludwig A, Baumann G, Stangl K, et al. Proteasome inhibition prevents experimentally-induced endothelial dysfunction. Life Sciences. 2009 Jun;84(25):929-34.
- 220 Quartermaine C, Ghazi SM, Yasin A, Awan FT, Fradley M, Wiczer T, et al. Cardiovascular Toxicities of BTK Inhibitors in Chronic Lymphocytic Leukemia. JACC: CardioOncology. 2023 Oct;5(5):570-90.
- 221 Sapon-Cousineau V, Sapon-Cousineau S, Assouline S. PI3K Inhibitors and Their Role as Novel Agents for Targeted Therapy in Lymphoma. Curr Treat Options in Oncol. 2020 Apr;21(6):51.
- 222 Caldeira D, Alves D, Costa J, Ferreira JJ, Pinto FJ. Ibrutinib increases the risk of hypertension and atrial fibrillation: Systematic review and meta-analysis. PLoS One. 2019 Feb;14(2):e0211228.
- 223 Levade M, David E, Garcia C, Laurent P-A, Cadot S, Michallet A-S, et al. Ibrutinib treatment affects collagen and von Willebrand factor-dependent platelet functions. Blood. 2014 Dec;124(26):3991-5.
- 224 Kamel S, Horton L, Ysebaert L, Levade M, Burbury K, Tan S, et al. Ibrutinib inhibits collagen-mediated but not ADP-mediated platelet aggregation. Leukemia. 2015 Apr;29(4):783-7.
- 225 Tang CPS, McMullen Julie, and Tam C. Cardiac side effects of bruton tyrosine kinase (BTK) inhibitors. Leukemia & Lymphoma. 2018 Jul;59(7):1554-64.
- 226 Wang M, Rule S, Zinzani PL, Goy A, Casasnovas O, Smith SD, et al. Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial. Lancet. 2018 Feb;391(10121):659-67.
- 227 Curigliano G, Shah RR. Safety and Tolerability of Phosphatidylinositol-3-Kinase (PI3K) Inhibitors in Oncology. Drug Saf. 2019 Feb;42(2):247-62.

Cell Physiol Biochem 2025;59(S3):22-51

DOI: 10.33594/000000822

© 2025 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG

Choustoulaki et al.: B Cells in Cardiovascular and Hematologic Disease

228 Manouchehri A, Kanu E, Mauro MJ, Aday AW, Lindner JR, Moslehi J. Tyrosine Kinase Inhibitors (TKI) in Leukemia and Cardiovascular events - From mechanism to patient care. Arterioscler Thromb Vasc Biol. 2020 Feb;40(2):301-8.

- 229 Roskoski R. Targeting BCR-Abl in the treatment of Philadelphia-chromosome positive chronic myelogenous leukemia. Pharmacological Research. 2022 Apr;178:106156.
- 230 Grela-Wojewoda A, Pacholczak-Madej R, Adamczyk A, Korman M, Püsküllüoğlu M. Cardiotoxicity Induced by Protein Kinase Inhibitors in Patients with Cancer. International Journal of Molecular Sciences. 2022 Jan;23(5):2815.
- 231 Sun S, Qin J, Liao W, Gao X, Shang Z, Luo D, et al. Mitochondrial Dysfunction in Cardiotoxicity Induced by BCR-ABL1 Tyrosine Kinase Inhibitors -Underlying Mechanisms, Detection, Potential Therapies. Cardiovasc Toxicol. 2023 Aug;23(7):233-54.
- 232 Kobara M, Nessa N, Toba H, Nakata T. Induction of autophagy has protective roles in imatinib-induced cardiotoxicity. Toxicology Reports. 2021 Jan;8:1087-97.
- 233 Zakaria ZZ, Suleiman M, Benslimane FM, Al-Badr M, Sivaraman S, Korashy HM, et al. Imatinib- and ponatinib-mediated cardiotoxicity in zebrafish embryos and H9c2 cardiomyoblasts. Molecular Medicine Reports. 2024 Oct; 30(4):1-15.
- 234 Tsiantoulas D, Diehl CJ, Witztum JL, Binder CJ. B Cells and Humoral Immunity in Atherosclerosis. Circulation Research. 2014 May;114(11):1743-56.
- 235 Andreadou I, Ghigo A, Nikolaou P-E, Swirski FK, Thackeray JT, Heusch G, et al. Immunometabolism in heart failure. Nat Rev Cardiol. 2025 Jun DOI: 10.1038/s41569-025-01165-8
- 236 Pålsson-McDermott EM, O'Neill LAJ. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res. 2020 Apr;30(4):300-14.
- 237 Bradford HF, McDonnell TCR, Stewart A, Skelton A, Ng J, Baig Z, et al. Thioredoxin is a metabolic rheostat controlling regulatory B cells. Nat Immunol. 2024 May; 25(5):873-85.

51