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Abstract
Cellular senescence and polyploid giant cancer cells (PGCCs) constitute distinct, yet 
interconnected, stress adaptation cellular programs that critically shape breast cancer (BC) 
progression and therapeutic response. Senescence arises via replicative, oncogene-induced, 
or therapy-induced mechanisms, and it is characterized by stable cell-cycle arrest and 
secretion of a senescence-associated secretory phenotype (SASP). Senescence can transiently 
suppress tumor growth; however, persistent senescence may ultimately facilitate immune 
evasion, cell survival, and chemoresistance. In turn PGCCs development comprises cytokinesis 
failure, endoreplication, or mitotic slippage and are notable for their enlarged morphology, 
genomic plasticity, and the ability to generate therapy-resistant progeny through atypical 
divisions. Both cell states often co-occur following genotoxic stress, as senescent cells can 
become polyploid and PGCCs may display senescence-associated features, complicating their 
distinction. While resistance mediated by therapy-induced senescence (TIS) is mainly driven 
by SASP signaling and reversible arrest, PGCC-driven resistance is associated with genetic 
diversification, acquisition of stemness, and long-term persistence. Therapeutic strategies 
include senolytics and senomorphics, as well as emerging PGCC-targeted approaches. 
By integrating morphological, molecular, and ploidy-based approaches to distinguish 
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these phenotypes, this review aims to clarify their overlapping and divergent roles in BC 
chemoresistance and to highlight opportunities for more effective therapeutic interventions.

Introduction

Breast cancer (BC) is a heterogeneous malignant disease comprising multiple molecular 
subtypes that differ markedly in tumor development, progression, and therapeutic response 
[1]. Data from the American Cancer Society (ACS) ranks BC as the most prevalent cancer 
among women, accounting for 32% of diagnosed cases and 14% of cancer-related deaths 
anticipated in the United States for 2025. Additionally, the estimated incidence of invasive 
cancer is 2.1% among women under 49 years, increasing to 7.3% in those aged 65 to 84 
years [2], pointing BC as an aging-related disease. This can be attributed to cumulative DNA 
damage, prolonged hormonal exposure, and immunosenescence, all of which contribute to a 
microenvironment conducive to tumorigenesis [3–5].

Beyond age, BC heterogeneity is largely driven by intrinsic molecular subtypes, which 
shape disease behavior and therapeutic outcomes. Immunohistochemical profiling based on 
estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 
receptor 2 (HER2) expression allows classification into four major clinical subtypes: luminal 
A (ER+ and/or PR+, HER2−), luminal B (ER+ and/or PR+, HER2±), HER2-enriched (ER−/PR−, 
HER2+), and triple-negative BC (TNBC; ER−/PR−/HER2−) [1, 6]. At the transcriptomic level, 
gene expression profiling further identifies intrinsic molecular subtypes, including basal-
like tumors, which show substantial but incomplete overlap with TNBC. Basal-like tumors 
are typically characterized by high expression of basal cytokeratins 5, 6, and 14, EGFR, 
elevated proliferative index, genomic instability, and aggressive clinical behavior [6]. These 
subtypes exhibit distinct epidemiological patterns, biological aggressiveness, and responses 
to systemic therapy. Luminal A tumors, more prevalent among women over 50 years of age, 
are characterized by low proliferative index (Ki-67 <14%), favorable prognosis, and higher 
sensitivity to endocrine therapy [7]. In contrast, TNBC occurs more frequently in younger 
patients and is associated with high aggressiveness, early relapse, limited targeted treatment 
options, and variable responses to chemotherapy [8]. These age-related distributions and 
the subtype-specific differences underscore the clinical relevance of molecular classification 
in predicting therapy response and resistance.

Standard BC treatment includes surgery, chemotherapy, radiotherapy, endocrine therapy, 
and targeted agents, choices being guided by tumor subtype and disease stage [9]. Despite 
therapeutic advances, tumor heterogeneity, adverse effects, and multidrug resistance (MDR) 
continue to compromise treatment effectiveness. Chemoresistance, defined as the ability 
of cancer cells to evade cytotoxic agents, results from multiple interconnected mechanisms 
and represents a major challenge for successful management of BC metastatic disease [10]. 
Components of the tumor microenvironment (TME), especially factors secreted by cancer-
associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), facilitate MDR, 
while cancer stem cells (CSCs) contribute to drug resistance through their high tumorigenic 
potential and increased expression of ATP-binding cassette transporters [11].

Among cellular mechanisms underlying therapy resistance, therapy-induced senescence 
(TIS) has emerged as a critical adaptive response in BC. Senescence is defined as a stable 
cell-cycle arrest that protects against genomic instability and can be triggered by replicative 
exhaustion, DNA damage, or oxidative stress [12]. In cancer, therapeutic interventions such as 
chemotherapy, radiotherapy, and targeted therapy can induce this state, wherein cells cease 
proliferation but remain metabolically active and acquire a senescence-associated secretory 
phenotype (SASP), characterized by the release of cytokines, proteases, protease inhibitors, 
and growth-promoting factors [13]. Although TIS can initially exert antitumor effects by 
limiting the expansion of damaged or pre-malignant cells, SASP components also have 
persistent inflammation, angiogenesis, immune escape, and formation of a pro-tumorigenic 
microenvironment [14, 15]. Importantly, senescent cells may eventually evade growth arrest 
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and resume proliferation. Large-scale screening of Food and Drug Administration (FDA)-
approved anticancer agents has demonstrated that TIS confers resistance to nearly half of 
the tested compounds in multiple BC cell lines [16]. Collectively, these observations establish 
TIS as a reversible drug-resistant state that significantly promotes BC relapse and metastasis.

On the other hand, polyploid giant cancer cells (PGCCs) are distinguished from 
senescent cells by the presence of multiple nuclei or markedly enlarged nucleus [17]. Like 
TIS, PGCCs may arise from response to therapy-induced stress that promotes cell-cycle 
arrest or genomic alterations [18]. Their increased nuclear content and genomic redundancy 
enhance survival under cytotoxic pressure, strongly linking PGCCs to chemoresistance 
[19]. PGCCs and senescent cells share many characteristics: both can arrest cell-cycle, 
evade antineoplastic mechanisms, reorganize metabolism to ensure viability, and exhibit 
overlapping biomarkers, including senescence-associated β-galactosidase (SA-β-gal) activity 
[19]. This phenotypic overlap between senescent cells and PGCCs lacks selective molecular 
markers; therefore, compromising the distinction between TIS and PGCCs, challenging the 
choice of accurate BC treatment and the development of target therapeutic strategies.  Given 
their overlapping features and distinct biological functions, deeper insights into the roles 
of TIS and PGCCs in chemoresistance, cellular aging, and BC progression are imperative. 
Although both phenomena originate from therapy-induced stress and share survival and 
evasion mechanisms, their outcomes, functions, and clinical implications considerably 
diverge. In this context, the present work aims to enlighten the differences between TIS 
and PGCCs, emphasizing how each state uniquely contributes to therapeutic resistance and 
tumor evolution, thereby assuring diagnostic interpretation and promoting the development 
of advanced BC targeted therapies.

Senescence versus polyploidization: distinct paths of cellular adaptation

Senescence, first described by Hayflick in 1961, is a defined cellular program characterized 
by profound morphological, biochemical, and metabolic remodeling that culminates in 
stable or long-lasting proliferative arrest [13, 20–22]. Despite loss of replicative capacity, 
senescent cells remain viable, metabolically active, and frequently resistant to apoptosis 
[23, 24]. Senescence is induced by diverse stressors, including genomic or telomeric 
damage, oxidative stress, epigenetic imbalance, oncogene activation, and tumor suppressor 
dysfunction, which converge to halt proliferation and prevent the propagation of genetically 
compromised cells [25, 26]. Among senescence subtypes, replicative senescence (RS) is a 
classical aging-associated barrier driven primarily by telomere attrition, mitochondrial 
dysfunction, and cumulative genomic instability [27–29]. RS functions as a potent tumor-
suppressive mechanism, partly through activation of the senescence-associated secretory 
phenotype (SASP), which promotes immune-mediated clearance of damaged cells [27–29].

In the context of cancer biology, senescence can also be triggered by anticancer therapies 
[30], radiotherapy [31], endocrine therapy [21], or pathogen-associated stress [32]. These 
stimuli induce TIS or oncogene-induced senescence (OIS), which operate through distinct 
signaling pathways yet converge on a similar growth-arrested phenotype. The interplay 
among these mechanisms highlights senescence as both an intrinsic aging process and a 
treatment-modulated cellular outcome of relevance to BC [33].

Key drivers of RS

RS emerges when cumulative cellular stress exceeds the threshold required to maintain 
faithful replication, thereby enforcing irreversible growth arrest [34–37]. Mitochondrial 
dysfunction plays a central role in this process, arising from calcium overload, membrane 
depolarization, dysregulated permeability transition, and disruption of NAD⁺/NADH 
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homeostasis [38, 39]. These alterations markedly increase reactive oxygen species (ROS) 
production, leading to oxidative damage of proteins, lipids, and nucleic acids and promoting 
genomic instability [34, 39, 40].

In parallel, telomere shortening constitutes a key aging-related mechanism leading 
to RS [33]. Progressive telomere erosion, inherent to lagging-strand DNA synthesis, 
compromises chromosomal end protection and elicits persistent DNA damage responses 
that drive senescence or apoptosis [41–44]. Genomic instability further reinforces RS, as 
age-related decline in DNA repair fidelity, checkpoint control, and telomere maintenance 
accelerates mutation accumulation and transcriptional dysregulation [45–49]. To counteract 
accumulating lesions, cells develop multiple DNA repair systems, including direct reversal, 
mismatch repair (MMR), nucleotide excision repair (NER), base excision repair (BER), 
homologous recombination (HR), and non-homologous end joining (NHEJ) [50]. MMR 
corrects base mismatches and insertion–deletion loops [51]: i) NER removes bulky adducts 
and transcription-blocking lesions [52]; ii) BER repairs oxidized or alkylated bases in nuclear 
and mitochondrial genomes [50, 53]; iii) and HR and NHEJ resolve single- and double-strand 
breaks [45]. When the extent of damage exceeds repair capacity, persistent lesions activate 
canonical senescence pathways: p53/p21/SDI1/CIP1 and p16INK4A/Rb, consolidating 
proliferative arrest [36, 54, 55].

The senescent phenotype evolves dynamically, progressing from early cell-cycle arrest 
to a fully established state marked by chromatin remodeling, lysosomal expansion, and 
robust SASP secretion [55–59]. While senescence initially supports tissue homeostasis 
and tumor suppression, chronic retention of senescent cells contributes to inflammation, 
tissue dysfunction, and age-related pathologies [60]. In breast tissue, intact RS machinery is 
therefore critical for restricting early tumorigenesis and shaping the cellular landscape upon 
which oncogenic events may later act [35, 46].

Key drivers of OIS

Oncogene-induced senescence (OIS) represents a mechanistically distinct yet convergent 
tumor-suppressive barrier triggered by aberrant oncogenic signaling rather than cumulative 
aging-related damage [13]. Unlike RS, OIS is acutely induced following excessive mitogenic 
stimulation that overwhelms cellular replication and repair capacity.

One of the best-characterized initiators of OIS is the oncogenic H-RASG12V variant, 
which normally regulates proliferation, differentiation, and survival. Mutations at codon 
12 (G12V or G12D) lock RAS in a constitutively active state, driving excessive mitogenic 
signaling [61, 62]. This hyperproliferative status induces replicative stress signals and DNA 
damage, including fragile telomeres that are highly susceptible to breakage and persistent 
activation of the DNA damage response (DDR) [61, 63]. Sustained DDR signaling, in turn, 
engages canonical senescence pathways (p53/p21 and p16INK4A/Rb), enforcing cell-cycle 
arrest and stabilizing the senescent phenotype [54, 55].

Beyond RAS, dysregulation of PI3K/AKT and MAPK signaling, frequently observed in 
BC, can similarly trigger OIS when signaling intensity exceeds tolerable thresholds [62]. 
Effective execution of OIS critically depends on intact DDR and tumor suppressor pathways; 
failure of these checkpoints enables senescence bypass, genomic instability, and malignant 
progression [23]. Thus, while RS reflects a gradual aging-associated process and OIS an acute 
oncogenic stress response, both converge on shared molecular effectors to preserve genomic 
integrity and restrain tumor initiation.
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Key drivers of TIS

TIS constitutes a clinically relevant, accelerated senescence program elicited by 
antineoplastic interventions, including chemotherapy, radiotherapy, and endocrine therapy 
[21, 30, 31]. These treatments induce substantial genotoxic and oxidative stress, increasing 
senescence-associated biomarkers, remodeling cellular morphology, and activating DDR 
signaling [30].

Mechanistically, most TIS-inducing agents converge on DNA damage, activating ATM/
ATR kinases and downstream p53 signaling, thereby inhibiting cyclin–CDK complexes 
and enforcing growth arrest [64–66]. Parallel inhibition of CDKs by Chk1/Chk2 further 
consolidates this arrest, and senescence can arise even when individual DDR components 
are partially compromised [67]. TIS may also proceed through p16- and Rb-dependent 
mechanisms that block S-phase entry [68, 69].

In cancer, however, mutations affecting DDR components, ATM, or p53 may corrupt these 
checkpoints, enabling cells to evade or exit senescence [70]. Consequently, TIS may function 
not only as a growth-limiting response but also as a transient adaptive state that promotes 
survival under therapeutic stress and facilitates polyploidization, thereby contributing to 
the emergence of PGCCs and chemoresistance [16].

Key drivers of PGCCs

Polyploid cells, defined by the presence of more than two complete chromosome sets, 
occur physiologically in multiple tissues and contribute to development, regeneration, 
and differentiation [71–74]. In cancer, however, polyploidization represents a pathological 
adaptation frequently induced by genotoxic stress and anticancer therapies [75–77]. Cancer-
associated polyploidy arises predominantly through endoreplication, cytokinesis failure, or 
cell fusion [73].

Endoreplication generates polyploid cells through repeated rounds of DNA synthesis 
without mitosis, a process favored by p53 and Rb dysfunction that disrupts cell-cycle 
control [73, 78, 79]. Cytokinesis failure and endomitosis similarly yield enlarged mono- or 
multinucleated cells with high DNA content [73, 79]. Cell fusion constitutes an additional 
route to polyploidization, involving coordinated stages of membrane remodeling, adhesion, 
and cytoplasmic merging, often resulting in highly unstable genomes [80–84].

PGCCs arise through these mechanisms and display senescence-like features, including 
growth arrest, metabolic remodeling, and resistance to apoptosis [79]. Importantly, PGCCs 
are typically transient, persisting for limited periods in vitro and in vivo, during which they 
enter a dormant yet viable state [85, 86]. Through reductive depolyploidization, PGCCs 
can generate genetically diverse diploid progeny with enhanced invasiveness, metastatic 
potential, and therapeutic resistance [79, 87]. Consistently, increased PGCC burden correlates 
with poor prognosis, advanced disease stage, and treatment failure across multiple tumor 
types, including BC [85, 88].

TIS and PGCCs: morphological and biomarker features

Distinguishing senescent cells from PGCCs remains challenging due to substantial 
phenotypic overlap. Senescent cells typically exhibit increased cell volume, flattened 
morphology, cytoplasmic vacuolization, and occasional multinucleation, reflecting sustained 
growth signaling in the absence of proliferation [60, 89]. PGCCs, by contrast, display 
proportional enlargement of both nucleus and cytoplasm, with markedly increased and 
irregular DNA-rich nuclei [79, 88, 90, 91].
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From a molecular point of view, no single exclusive biomarker defines senescence; 
instead, a set of indicators is required. Cell-cycle arrest supports the senescence state 
when observed alongside suppressed expression of proliferation-associated genes in a pro-
mitogenic context [92]. Increased lysosomal content, detectable as lipofuscin accumulation, 
and elevated SA-β-gal activity are still the most widely used markers in vitro and in vivo 
[60]. Expression of p16INK4a, p21Cip1/Waf1, and DDR components further supports senescence 
identification, although some of these markers may also be detectable at lower levels in 
PGCCs [93]. Several of these markers may also be detected in PGCCs, albeit in a context-
dependent manner. PGCCs further express stemness-associated markers, including CD44 
and CD133, and exhibit enhanced autophagic activity, reflecting shared stress-adaptive 
programs [80, 94].

Given the absence of exclusive molecular identifiers, quantitative assessment of 
ploidy and DNA content remains the most reliable discriminative criterion for PGCCs [91]. 
Recognizing the overlap and limitations of morphological and molecular markers is therefore 
essential for accurately interpreting therapy-induced cellular responses and understanding 
how genotoxic stress promotes the emergence of PGCCs in BC.

TIS and PGCCs in BC context

PGCCs have increasingly been recognized as critical contributors to BC progression, 
particularly in advanced disease, recurrence, and resistance to conventional therapies 
[18]. Clinically, PGCCs are frequently associated with metastatic dissemination and exhibit 
senescence-like features, reinforcing the phenotypic overlap between polyploidization and 
TIS [18].

Both preclinical and clinical evidence indicate that PGCCs emerge across multiple BC 
molecular subtypes. Analysis of human breast tumor biopsies encompassing luminal and 
basal-like tumors revealed the presence of PGCCs in both subtypes, with a higher abundance in 
basal-like tumors [95]. Notably, these samples displayed elevated levels of pro-inflammatory 
cytokines, suggesting an interaction between polyploidization and inflammatory signaling 
within the TME [95].

Despite their clinical relevance, there are currently no PGCC-targeted therapies in 
clinical trials [96]. Nonetheless, preclinical studies have begun to characterize therapy-
induced PGCC formation (with CpCl2, a chemical hypoxia inducer, for example) and to 
identify compounds that selectively targets these cells, such as PRL3-zumab [87]. Taxanes 
such as docetaxel are commonly used to induce PGCCs in experimental models, enabling 
high-throughput drug screening approaches [96]. While most agents fail to eradicate PGCC 
populations, reflecting their intrinsic drug tolerance, selected compounds, including digoxin, 
disulfiram, azacitidine, decitabine, and zoledronic acid, have demonstrated efficacy against 
PGCCs in BC models [17, 87].

Several anticancer therapies have been shown to promote PGCC formation as an adaptive 
response to cytotoxic stress. Chemotherapeutic agents such as PARP inhibitors (olaparib 
and niraparib) and Aurora A kinase inhibitors (e.g., alisertib) induce polyploidization 
in BC in vitro models, accompanied by increased cell size, abnormal morphology, and 
expression of senescence-associated markers, including SA-β-gal, γ-H2AX, and p21 [62, 63, 
97]. Importantly, subsets of PGCCs retain clonogenic potential and generate progeny cells, 
supporting the concept that polyploidization functions as a survival strategy enabling tumor 
repopulation following drug-induced stress [17, 18].

Antibody–drug conjugates (ADCs) have similarly been implicated in PGCC induction 
in BC. Agents such as trastuzumab emtansine, trastuzumab deruxtecan, XMT-1522, and 
disitamab vedotin generate PGCCs that subsequently give rise to smaller, low-DNA-
content progeny consistent with a drug-tolerant persister phenotype [98]. Transcriptomic 
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analyses of these cells reveal downregulation of proliferation-associated genes (e.g., MKI67 
and CDK4) alongside with upregulation of cell-cycle arrest (GADD45A, p21), epithelial–
mesenchymal transition (EMT), and autophagy-related pathways, coupled with reduced 
lamin B1 expression, a hallmark of senescence-like states [98].

Beyond therapeutic agents, environmental stressors may also promote PGCC formation. 
Exposure to the fungicide fludioxonil has been shown to induce polyploidization in the 
MDA-MB-231 BC cell line, characterized by increased cell size, multinucleation, impaired 
cell division, and elevated p53 expression, further emphasizing the sensitivity of cancer cells 
to stress-induced polyploid adaptation [99].

Collectively, current evidence supports PGCC formation as a common adaptive response 
to therapeutic and environmental stress in BC, strongly associated with chemoresistance, 
recurrence, and tumor progression [87]. Although clinical validation remains limited, 
ongoing preclinical research underscores the importance of elucidating PGCC biology to 
inform the development of targeted strategies aimed at improving treatment durability, 
reducing relapse, and ultimately enhancing patient survival.

TIS in BC chemoresistance and aging

Senescent cells are marked by extensive changes in chromatin organization, notably 
the formation of senescence-associated heterochromatin foci (SAHF), loss of lamin B1, and 
upregulation of CDK inhibitors p16INK4a and p21Cip1/Waf1 [100]. Additional hallmark features 
include SA-β-gal activity, persistent DNA damage foci, mitochondrial dysfunction, resistance 
to apoptosis, and stable cell-cycle arrest [15]. SASP is a defining characteristic of senescence, 
which has an impact on the development of age-related diseases and cancer [101]. In 
senescent cancer cells, SASP secretion comprises a mixture of cytokines, chemokines, 
growth factors, proteases, and extracellular matrix-modifying enzymes capable of reshaping 
the TME [102].

Although senescence initially acts as a tumor-suppressive mechanism by limiting the 
proliferation of damaged cells [15], mounting evidence highlights its paradoxical role in 
tumor progression and therapeutic resistance [103]. This duality is particularly evident in 
TIS, a cellular state elicited by chemotherapeutic agents, radiotherapy, and targeted therapies 
that induce DNA damage and oxidative stress, activating p53/p21 and p16/Rb signaling 
pathways [104]. TIS contributes to chemoresistance through multiple interconnected 
mechanisms, including sustained pro-survival signaling, evasion of apoptosis, and paracrine 
support mediated by SASP components such as IL-6, IL-8, and TGF-β [13, 16, 101, 105, 
106]. These factors promote EMT-like traits, immune suppression, metastatic potential, and 
survival of neighboring cancer cells. Importantly, persistent senescent tumor cells can serve 
as a reservoir for tumor repopulation following therapy, contributing to residual disease and 
relapse, a phenomenon well documented in BC [13, 15, 100, 107].

Experimental studies in BC cell lines, including MCF-7, T47D, MDA-MB-231, and 
Hs578T, demonstrate that cells surviving chemotherapy frequently acquire senescence-
associated features, such as p21 upregulation, γ-H2AX foci, BCL2L1 induction, and SA-β-gal 
positivity [16, 108]. Clinically, senescence-like phenotypes have been observed in tumors 
exhibiting incomplete pathological response to neoadjuvant chemotherapy [109]. In TNBC, 
chemotherapy-induced senescence is closely associated with stemness acquisition, SASP-
mediated survival, and the emergence of drug-resistant clones [110]. Notably, senescence 
in cancer is not invariably terminal; a subset of senescent cells can escape growth arrest, 
re-enter the cell cycle, and generate progeny with enhanced aggressiveness and therapy 
resistance. This senescence escape involves transcriptional reprogramming that increases 
cellular plasticity and stem cell-like properties [16].

Beyond intrinsic survival advantages, senescent BC cells actively evade immune 
surveillance. Increased expression and altered glycosylation of PD-L1 have been observed 
during senescence, with ribophorin-1 implicated in PD-L1 processing [111]. In addition, 
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elevated expression of DPP4/CD26 in senescent MCF-7 and MDA-MB-231 cells promotes 
immune escape and tumor cell survival. Pharmacological inhibition of DPP4 using sitagliptin, 
combined with the senolytic agent azithromycin, has shown synergistic efficacy in reducing 
senescent cell burden in vitro [112]. Notably, DPP4 is also recognized as a marker of aging, 
further linking senescence-associated immune modulation to age-related processes [113].

Critically, TIS shares extensive molecular and functional overlap with age-related 
senescence, including persistent DDR signaling, mitochondrial and metabolic dysfunction, 
chronic inflammation, and long-term SASP activity [57, 114]. In aged tissues, accumulation 
of senescent stromal, epithelial, and immune cells compromises immune surveillance and 
sustains a pro-tumorigenic microenvironment [115, 116]. In BC, these aging-associated 
alterations amplify the deleterious effects of TIS, increasing paracrine survival signaling and 
elevating the risk of treatment failure, particularly in elderly patients [117, 118].

Collectively, these findings underscore the central role of TIS in linking chemoresistance 
and aging in BC. Elucidating the mechanisms by which senescence promotes drug tolerance, 
including SASP signaling, immune evasion, and senescence escape, is essential for the 
development of effective therapeutic strategies. Incorporation of senolytic or senostatic 
agents into conventional treatment regimens holds promise for mitigating senescence-
driven relapses and improving long-term patient outcomes.

PGCCs in BC chemoresistance and aging

PGCCs are increasingly recognized as an adaptive tumor cell state that can arise in 
response to severe cellular stress, particularly genotoxic insults induced by chemo- or 
radiotherapy [19, 79]. This subpopulation is characterized by whole-genome doubling or 
the accumulation of multiple chromosomal sets, resulting in markedly enlarged mono- or 
multinucleated cells with enhanced stress tolerance. Importantly, PGCCs have been shown to 
generate smaller, therapy-tolerant progeny through atypical division processes, suggesting 
a potential role in tumor persistence following treatment [17, 18]. Accumulating evidence 
indicate that increased PGCC abundance is associated with adverse clinical outcomes in 
breast, ovarian, and colorectal cancers, including disease progression, chemoresistance, 
metastasis, and recurrence [18, 19, 79].

PGCC formation can occur through multiple mechanisms, such as endoreplication, mitotic 
slippage, cytokinesis failure, cell fusion, and cell cannibalism [18, 79]. Microenvironmental 
stressors, including hypoxia, elevated reactive oxygen species, and persistent DNA damage, 
appear to further favor polyploidization [79, 80, 119]. Following induction, PGCCs often 
enter a transient dormant or slow-cycling state and may subsequently undergo neosis-like 
divisions or asymmetric budding, giving rise to progeny with increased genomic plasticity, 
stem-like features, and reduced sensitivity to anticancer therapies [80]. Consistent with this 
phenotype, PGCCs have been reported to express stemness-associated markers (e.g., CD44, 
OCT4, ALDH1A1, SOX2, NANOG, SSEA1), exhibit EMT-related traits, evade apoptosis partly 
via autophagy, and undergo metabolic reprogramming [120]. Single-cell transcriptomic 
analyses in BC further reveal that PGCCs display distinct cell-cycle regulation, ferroptosis 
susceptibility, and pronounced intrapopulation heterogeneity compared with non-polyploid 
tumor cells [17].

Notably, PGCCs share several features with senescent cells, including SA-β-gal activity, 
expression of γ-H2AX and p21, and secretion of pro-inflammatory cytokines such as IL-1β 
and IL-6 [6]. However, unlike terminally arrested senescent cells, PGCCs retain the capacity 
to exit dormancy and re-enter proliferative cycles, generating mitotically active and therapy-
resistant progeny. This behavior has been observed in breast and ovarian cancer models 
exposed to DNA damage response inhibitors, including olaparib [6, 73, 120]. In addition, 
cytokines released by PGCCs may contribute to TME remodeling, supporting immune 
evasion, metastatic dissemination, and sustained drug tolerance [73, 120]. Collectively, 
these findings suggest that PGCC plasticity may facilitate post-treatment tumor relapse by 
combining stemness traits, senescence-like features, and lineage regeneration capacity [73, 
121].
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PGCC biology also intersects 
with aging-associated processes, 
including chronic oxidative stress, 
genomic instability, metabolic 
alterations, and activation of 
regenerative programs linked to 
stemness [73, 122, 123]. While 
polyploidization may represent an 
evolutionarily conserved stress-
adaptation mechanism, malignant 
cells appear to exploit this plasticity 
to survive therapeutic pressure and 
repopulate tumors [80, 120].

In summary, both TIS and 
PGCC formation emerge as stress-
adaptive responses to anticancer 
interventions but differ substantially 
in their temporal dynamics, 
molecular features, and biological 
consequences (Fig. 1). TIS is typically 
induced shortly after therapy and 
results in a growth-arrested, yet 
viable phenotype driven by p53/
p21 or p16/Rb signaling, persistent 
DNA damage, and SASP secretion 
[104]. This state is associated 
with transient drug tolerance, 
paracrine support of neighboring 
cells, immune modulation, and 
the potential for later escape from 
arrest [16]. In contrast, PGCCs tend 
to arise following more prolonged 
or intense stress and contribute to longer-term resistance through genome reorganization, 
neosis-like division, acquisition of stemness features, and generation of genetically diverse 
progeny [18]. Although both states may express senescence-associated markers, PGCCs are 
uniquely defined by polyploidy, cellular gigantism, and extensive genomic plasticity, favoring 
lineage regeneration rather than stable arrest [17]. Distinguishing these adaptive programs 
has important implications for biomarker development, therapeutic targeting, and patient 
stratification, particularly in aging BC populations where clearance of stress-adapted cells 
may be compromised.

TIS and PGCCs therapeutic implications and clinical strategies in BC

Senescent cells may initially exert antitumor effects by enforcing stable cell-cycle arrest 
and limiting oncogenic signaling [13, 124]. For example, inhibition of NOTCH1 in murine TNBC 
models has been shown to induce senescence and enhance tumor responsiveness to immune 
checkpoint blockade, partly through SASP-mediated type I and II interferon signaling [125]. 
However, at later stages of disease, senescent cells can acquire protumorigenic functions 
that support tumor cell survival, therapy resistance, and disease progression, highlighting 
the context-dependent role of senescence in BC [13, 124].

Clinically, the accumulation of senescent cells has been associated with reduced 
sensitivity to CDK inhibitors, immune checkpoint inhibitors, and cytotoxic therapies. 
Importantly, the reversibility of TIS suggests potential therapeutic windows, as TIS-

Fig. 1. Contrasting TIS- vs PGCCs- driven chemoresistance 
in BC. TIS typically occurs early post-therapy when cells 
suffer cycle arrest after DNA damage and adopt the 
senescent phenotype, with SASP secretion and survival 
advantages. Also, paracrine protection of nearby tumor 
cells, immune modulation, and escape from TIS and re-entry 
into proliferation after weeks. In contrast, PGCCs consist of 
a later adaptive response to extreme stress after therapy, 
involving polyploidization, stress resilience, stemness, EMT, 
and metastatic features, and the generation of progeny that 
work as a resource of resistant cells that contribute to tumor 
repopulation and relapse.
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associated resistance is not always permanent [16]. In therapy-induced senescent BC cell 
lines (MCF-7, MDA-MB-231, Hs578T, and T47D), doxorubicin exposure led to senescence 
followed by partial loss of senescence markers, resumption of proliferation, and recovery 
of drug sensitivity [16]. In contrast, in HER2-enriched SKBR3 cells, escape from TIS was 
associated with increased chemoresistance [126]. These divergent outcomes indicate that 
the consequences of TIS reversal are influenced by tumor subtype, treatment context, and 
underlying genomic adaptations.

Accordingly, senotherapeutic strategies, including senolytics and senomorphics, have 
emerged as potential approaches to counteract senescence-associated resistance in BC [21, 
127]. Senolytics selectively eliminate senescent cells by targeting anti-apoptotic pathways, 
such as BCL-2 family signaling [21], and include natural compounds (quercetin, fisetin), 
kinase inhibitors (dasatinib), and other targeted agents (e.g., RG7112, LBH589, OKI-179, 
ARV-825) [127, 128]. Preclinical studies report senolytic activity of compounds such as 
venetoclax, navitoclax, QD3, and fisetin in BC models [129–132], although clinical translation 
remains challenging for some agents due to toxicity or limited therapeutic windows [30]. 
In contrast, senomorphics aim to suppress SASP signaling and attenuate protumorigenic 
effects without eliminating senescent cells, commonly through inhibition of NF-κB or mTOR 
pathways [21].

Targeting PGCCs represents a complementary but still emerging therapeutic avenue 
in BC. Although these cells have been strongly implicated in therapy resistance and tumor 
relapse, selective strategies remain largely preclinical [17, 96]. Recent compound screens 
using 2D and 3D BC models identified proteasome inhibitors (bortezomib, carfilzomib, 
MG-132, ixazomib) and ferroptosis inducers (IKE, RSL3, FINO2, ML162, ML210) as active 
against PGCC-enriched populations across multiple BC subtypes, including TNBC and HER2-
enriched tumors [17]. Additional candidates include CHK inhibitors (AZD7762, PF-477736) 
and the FOXM1 inhibitor thiostrepton, while drug repurposing screens have highlighted 
compounds such as the antimalarial pyranaridine [96].

The distinct biological properties of senescent cells and PGCCs necessitate differentiated 
therapeutic strategies, as illustrated in Fig. 2. While senescence may be induced by clinically 
tolerable drug doses, effective senolytic approaches often require higher or combination 
regimens that may increase systemic toxicity [30]. In contrast, advances in PGCC detection 
and high-throughput screening have accelerated the identification of candidate compounds, 
although in vivo validation and mechanistic elucidation remain ongoing. Overall, a refined 
understanding of the temporal dynamics and mechanistic differences between TIS- and 
PGCC-mediated resistance, particularly within aging TMEs, may inform rational combination 
strategies and support more personalized therapeutic interventions in BC.

Fig. 2. Targeted therapies for 
senescent cells and PGCCs in 
BC. Targeted approaches exploit 
specific characteristics of each 
phenotype. In the context of 
senescent cells, therapeutic 
strategies include senomorphic 
and senolytic agents, which 
act through anti-apoptotic 
pathways, inhibition of SASP 
components, and induction 
of apoptosis. For PGCCs, 
targeted therapeutic agents 
include proteasome inhibitors, 
ferroptosis inducers, CHK and 
FOXM1 inhibitors, and other 
potential compounds. These 
agents represent a promising approach to overcoming chemoresistance and improving the clinical efficacy 
of treatment.
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Experimental approaches to distinguish TIS from PGCCs in BC

TIS and PGCCs frequently emerge after genotoxic stress in BC and share overlapping 
phenotypic features, yet they represent biologically distinct stress-adapted states. Accurate 
discrimination between these phenotypes is essential for interpreting therapeutic responses, 
anticipating relapse risk, and understanding long-term tumor evolution [133]. Because no 
single biomarker reliably distinguishes TIS from PGCCs, current experimental strategies 
rely on multiparametric frameworks integrating functional, morphological, regulatory, and 
molecular readouts [134].

Contemporary approaches range from conventional immunocytochemistry and flow 
cytometry to advanced single-cell technologies, including high-resolution transcriptomic 
profiling [96]. Importantly, reliance on isolated markers, such as SA-β-gal or p16 alone, is 
discouraged, as these features may overlap in heterogeneous post-treatment populations 
[18, 71]. Instead, robust discrimination requires the coordinated assessment of DNA 
ploidy, proliferative status, DNA damage patterns, cell-cycle regulation, morphology, and 
transcriptional identity [96, 135].

Multiparametric integration

A multiparametric approach provides the most reliable distinction between TIS and 
PGCCs in BC by integrating complementary biological axes (summarized in Table 1) [19].

Quantification of DNA content by flow cytometry represents the most direct and 
objective discriminator. TIS typically remains within the 2N–4N range, even following 
substantial genotoxic stress, whereas PGCCs frequently exceed 8N because of mitotic failure 
or endoreduplication [18, 136]. This distinction has been consistently observed in BC models 
treated with paclitaxel, doxorubicin, or irradiation [122, 137]. Complementary evaluation of 
Ki-67 expression further refines classification: sustained Ki-67 suppression characterizes 
stable senescence, whereas PGCCs may transiently reactivate proliferation during neosis-
like events, generating tumor-repopulating progeny [112, 135].

TIS is defined by robust 
and homogeneous induction 
of cell-cycle inhibitors, 
particularly p21, following 
treatment with CDK4/6 
inhibitors or endocrine 
therapies in BC models [21, 
138]. In contrast, PGCCs 
often display irregular, 
transient, or reduced 
p21 and p16 expression, 
reflecting an inability to 
maintain stable arrest. Loss 
or dysfunction of p53 further 
facilitates polyploidization 
and proliferative escape 
[136, 137]. When combined 
with ploidy analysis, 
i m m u n o c y t o c h e m i c a l 
detection of these regulators 
substantially strengthens 
phenotype classification.

The spatial organization 
of DNA damage provides an 
additional discriminatory 

Table 1. Multiparametric framework for distinguishing TIS from 
PGCCs in BC. Parameters compiled across functional, regulatory, 
damage-related, morphological, stemness, and transcriptional axes to 
guide reliable phenotype identification
 
Parameter TIS PGCCs References 

Ploidy 
2N–4N 

Without genomic 
amplification 

>4N, frequently >8N after genotoxic 
reactions. 

Endoreduplication or mitotic slippage 
[18,122,136,137] 

Ki-67 Sustained suppression and 
stable proliferative blockade. 

Reactivation of Ki-67 during neosis and 
formation of proliferative progenies [112,135] 

SA-β-gal Positive; classic marker at pH 
6.0. 

It can be a false positive due to 
lysosomal expansion under stress. [21,112,130] 

p21/p16 

↑p21  
↑p16 

Support for the stoppage on 
G1 

p21 heterogeneous, reduced or irregular 
p16 irregular [12,21,112,138] 

p53 Function generally preserved. Loss or dysfunction of p53 
Polyploidization and escape [136,137] 

γ-H2AX Small, well-defined foci of γ-
H2AX Stabilized damage. 

Diffuse, strong, and irregular γ-H2AX 
Active genomic instability [5,21,122,137] 

Cell morphology 
Larger cells 

Nuclear organization 
preserved 

Giant nuclei 
Multinucleation 

Irregular chromatin 
[136,137] 

Mitosis / Cytokinesis No signs of mitotic 
catastrophe 

Aborted cytokinesis 
Nuclear fusions 
Mitotic failure 

[136,137] 

Aurora A Not significantly altered Inhibition increases PGCCs [97] 

Stemness (ALDH, 
CD44/CD24) 

Markers that do not increase 
Low self-renewal 

 

↑ALDH 
CD44high/CD24low 

Regenerative offspring 
[17,21,122,136] 

Transcriptome 
(scRNA-seq) 

SASP profile 
Cycle suppressed  

↑p21 

Signatures of plasticity 
High metabolism 

Endurance 
[17,96,112] 

Biological behavior Stable proliferative blockade 
Adaptive phenotype 

Generates aggressive and resistant 
offspring 

[136,137] 
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layer. In TIS, residual lesions typically appear as discrete, persistent γ-H2AX foci, reflecting 
stabilized DNA damage signaling [5, 21]. PGCCs, by contrast, often exhibit diffuse and intense 
γ-H2AX staining, consistent with ongoing chromosomal instability and defective mitosis 
during polyploidization [122, 137]. Thus, both the presence and distribution of γ-H2AX 
signals are informative for distinguishing stabilized senescence from progressive genomic 
destabilization.

Morphological assessment remains a powerful and accessible discriminator. PGCCs 
display hallmark features such as extreme cell enlargement, multinucleation, irregular 
chromatin organization, prominent nucleoli, and evidence of aborted cytokinesis, frequently 
linked to mitotic stress or Aurora kinase inhibition [97, 136, 137]. TIS cells, in contrast, 
exhibit moderate enlargement without overt mitotic catastrophe, reinforcing morphology 
as a critical classification parameter when interpreted alongside ploidy.

PGCCs and their progeny commonly exhibit elevated ALDH activity and a CD44high/
CD24low phenotype, consistent with enhanced regenerative capacity and therapeutic 
resistance [122, 136]. TIS cells generally lack these features and show diminished self-
renewal potential [17, 21]. This axis is particularly informative for identifying proliferative 
escape events driven by PGCC-derived lineages after therapy.

Single-cell RNA sequencing provides the highest-resolution discrimination between 
these states. TIS is characterized by SASP-enriched transcriptional programs, global 
suppression of cell-cycle genes, and strong p21-associated signaling. In contrast, PGCCs 
display gene expression profiles linked to cellular plasticity, metabolic rewiring, regenerative 
potential, and drug tolerance [17, 96, 112]. Integration of transcriptomic, morphological, 
and functional data confirms that PGCCs represent a minor yet biologically impactful 
subpopulation contributing to therapeutic resistance and tumor recurrence in BC.

Individually, each parameter provides only partial discrimination. When combined, 
however, they establish a high-precision analytical framework: ploidy defines genomic 
context; p21 and Ki-67 indicate proliferative stability; γ-H2AX patterns reflect DNA damage 
dynamics; morphology captures mitotic integrity; stemness markers reveal regenerative 
capacity; and transcriptomics resolves molecular identity [139–143]. Together, these axes 
offer the most reliable strategy for distinguishing TIS from PGCC-associated phenotypes, 
with direct implications for experimental interpretation and therapeutic decision-making 
in BC.

Conclusion

Accumulating evidence indicates that BC progression and therapeutic failure are tightly 
intertwined with aging-associated biological processes. Cellular senescence, chronic SASP 
signaling, and the emergence of PGCCs collectively shape a tumor ecosystem characterized 
by persistent inflammation, metabolic rewiring, and enhanced survival rates under stress. 
These aging-driven alterations not only promote adaptability and resistance to endocrine 
or chemotherapeutic agents but also generate a reservoir of highly plastic cells capable of 
driving tumor recurrence and metastasis. Recognizing how aging reprograms cancer cell 
fate is essential for redefining vulnerability nodes in BC. This review proposes that targeting 
aging1 related mechanisms, particularly those governing senescence and PGCC formation, 
may be pivotal for restoring therapeutic sensitivity and improving long-term outcomes in 
BC.
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