Inflammation, often perceived negatively today, is frequently associated with damage and disease [1, 2]. This view is not necessarily tied to the word's etymology (from the Latin inflammare, meaning "to set on fire") but rather stems from a loose understanding of its biological role. We often overlook the concept established in 1859 by Rudolf Virchow, which emphasized that inflammation is a natural, typically beneficial response that frequently results in restitutio in integrum i.e., the restoration of the tissue to its original state [3]. Virchow noted that inflammation does not occur without irritation (irritatio) and that the affected organ experiences functional impairment (functio laesa). He also described several physiopathological outcomes triggered by the initial insult. These include increased cell volume due to active nutrient and water uptake, hypertrophy, cellular division leading to proliferation and swelling, often accompanied by the local accumulation of inflammatory cells, fatty degeneration and edema. Such processes, when chronic, can sometimes result in irreversible cell damage and death. This series of events, for instance, mirrors our modern understanding of the pathophysiology and progression of atherosclerosis, a chronic inflammatory condition characterized by endothelial dysfunction (functio laesa) and associated hypertension, dyslipidemia, hyperglycemia and insulin resistance (irritatio). It is now widely accepted that the first event leading to local vascular damage in atherosclerosis in response to those irritants, is the recruitment of monocytes, monocyte-derived macrophages and T cells which initiate and sustain local inflammation. This eventually leads to lipid accumulation within cells (e.g., foam cells) and in extracellular spaces. Over time, these factors promote local proliferation of smooth muscle cells, accumulation of connective tissue, and thickening and hardening of the blood vessels i.e., hallmarks of atherosclerosis (and inflammation) [4].
Given this particular context and broad understanding of inflammation, it is reasonable to hypothesize that hypertension is directly linked to inflammation, an association that is now accepted [5-8]. Hypertension is a well-established risk factor for cardiovascular disease [9] and a key component of the metabolic syndrome (MetS), a cluster of independent risk factors for type 2 diabetes (T2D) and cardiovascular mortality. These factors include insulin resistance, glucose intolerance, obesity and dyslipidemia [10, 11]. Moreover, MetS is characterized by chronic tissue inflammation [12, 13], likely driven by subtle or pronounced activation of inflammatory mediators, dysfunctional macrophages, neutrophils and lymphocytes [14], oxidative stress [15] and impaired vascular function [16-19]. Consequently, antihypertensive medications, like sulfonamide diuretics, may directly or indirectly influence pro- or anti-inflammatory responses [20, 21]. Specifically, thiazides (e.g., hydrochlorothiazide, one of the most commonly prescribed drugs), thiazide-like diuretics (e.g., chlortalidone, metolazone, indapamide) and loop diuretics (e.g., furosemide, bumetanide, torsemide, ethacrynic acid), are frequently prescribed to manage hypertension and associated conditions [22, 23]. Thiazides and thiazide-like diuretics are primarily used for hypertension, while loop diuretics are preferred in more severe cases, particularly when rapid diuresis is necessary. Within these therapeutic frameworks, sulfonamide diuretics may contribute to clinical outcomes by directly or indirectly modulating local and/or systemic inflammatory responses.
The known pharmacological targets of thiazides, thiazide-like and loop diuretics include members of the SLC12A family of ion transporters, which comprise seven cation-chloride symporters. These are SLC12A1-7 [24]; SLC12A8, a nicotinamide mononucleotide carrier [25]; and SLC12A9, a polyamine transporter with the potential to interact and inhibit SLC12A2 [26, 27]. These transmembrane proteins share similar molecular structures [28-32] and most of what we know about their physiological function is related to their ability to move Cl⁻, Na⁺, and/or K⁺ across cell membranes to quickly regulate cell volume and maintain the balance of ions within cells [24]. Partially based on that, SLC12A family members are typically categorized based on their ion transport function i.e., the Na+K+2Cl– cotransporters NKCC1 (SLC12A2) and NKCC2 (SLC12A1), the Na+Cl− cotransporter NCC (SLC12A3), and the K+Cl− cotransporters KCC1 (SLC12A4), KCC2 (SLC12A5), KCC3 (SLC12A6), and KCC4 (SLC12A7) [33, 34]. While there are numerous splice variants produced by SLC12A genes [35, 36], it is generally accepted that many of them are, to varying extents, sensitive to specific sulfonamide diuretics. Notably, sulfonamide diuretics exert their established pharmacological effects by inhibiting the transport function of NCC and NKCC2, respectively, in the kidneys [24, 37]. Since these two cotransporters are abundantly expressed in that organ [38, 39], NCC and NKCC2 are usually regarded as kidney-specific, thiazide- and bumetanide-sensitive cotransporters, respectively [40-44]. Nevertheless, it is now relatively clear that thiazides, thiazide-like and loop diuretics may have clinically important effects independent of their renal targets [45-49]. In fact, bumetanide at low and furosemide at high concentrations are potent inhibitors of the ubiquitously expressed NKCC1 variants (NKCC1a and NKCC1b) [50, 51] and furosemide, in particular, effectively inhibits KCC1, KCC2, KCC3 and KCC4 [52-56], although at lower concentrations than those required to inhibit NKCCs [57-62]. Importantly, while NCC and NKCC2 have a wider tissue expression pattern than originally thought [63, 64], they are typically found at much lower levels compared to those in the kidneys [65-73]. Therefore, their pharmacological and physiopathological relevance is often perceived irrelevant, and consequently, the physiological and pharmacological roles of extra-renal NCC and NKCC2 remain understudied.
In addition to their pharmacological profile, the ion carrier function of diuretic-sensitive symporters is, in turn, fine-tuned by phosphorylation of key residues in SLC12A proteins, mostly driven by the OSR1/SPAK (Oxidative Stress Responsive 1/Ste20-related proline/alanine-rich kinase) and WNK (With-No-Lysine kinases, WNK1-4) signaling cascades [74]. These kinases are widely expressed and play a role in multiple physiopathological processes. They are also exquisitely sensitive to fluctuations in intracellular K+ and Cl– concentrations [74, 75], and to inflammatory mediators [76-80]. These processes can, in turn, influence the expression level, pattern or function of diuretic-sensitive symporters. For instance, SPAK/OSR1-mediated activation of NKCC1 aggravated inflammatory responses after injury [81, 82], whereas NKCC1 inhibition reduced intracellular NFκB phosphorylation [83, 84] and activated local inflammatory cells [81, 85]. In microglia and macrophages, elimination of NKCC1 correlated with increased inflammasome priming, local production of IL1β [86] and efferocytosis [87]. This is relevant, as IL1β production requires assembly and activation of inflammasomes [88]. In addition, this and other interleukins/cytokines such as IL6 and TNFα play important roles in the inflammatory responses by activating NFκB-dependent pathways [89].
Inflammatory mediators, including nerve growth factor (NGF), bradykinin, prostanoids (e.g., prostaglandin E2), and ATP released from injured cells, along with cytokines like IL1β, IL6, TNFα, and interferon γ (IFNγ), as well as reactive oxygen species, can significantly modulate the expression and function of various Cl– transporters and channels. These mediators influence cellular processes by altering ion flux and transporter activity, as suggested by studies on different cellular environments [90-93]. One example is NKCC1, whose expression and function are particularly sensitive to inflammatory mediators. Indeed, NKCC1 modulation has been observed in a wide range of cell types, including sensory neurons [94-97], where inflammation affects pain signaling and sensitivity [98]. Additionally, this cotransporter plays a critical role in non-neuronal cells, such as colonocytes and intestinal cells [95, 99-103], where it contributes to gut inflammatory conditions [104]. Beyond these roles, NKCC1 activity is modulated by inflammatory mediators in synoviocytes, the cells that line the joints, contributing to inflammatory joint diseases like rheumatoid arthritis [105]. It also impacts microglia [83, 106], the immune cells of the brain, linking NKCC1 to neuroinflammatory processes [98]. Other affected cell types include endothelial cells [107], which regulate blood vessel function during inflammation and choroid plexus epithelial cells [76, 108], which play a key role in cerebrospinal fluid production and brain homeostasis. Overall, the widespread impact of NKCC1 modulation by inflammatory mediators across these diverse cell types underscores its importance in both neural and systemic inflammatory responses.
Reactive oxygen species have also been reported to modulate thiazide- and loop diuretic-sensitive transporters. For instance, H2O2 [95, 100], superoxide [109], nitric oxide (NO) and NO-related species [110] can modulate NKCC1 and NKCC2 expression and function [111-115] as well as that of NCC [79]. NO also inhibited Cl– transport in renal tubular cells by mechanisms likely related, at least in part, to NKCC2 [79, 112, 116, 117], and regulated expression levels of KCC1, KCC3 and KCC4 in primary rat vascular smooth muscle cells in a protein kinase G-dependent manner [118-121]. Therefore, sulfonamide diuretics may have clinically significant effects beyond diuresis i.e., by modulating both the transport and/or non-transport functions of their known targets expressed outside tubular cells, as well as that of different targets unrelated to the SLC12A family. In turn, SLC12A members can respond to various inflammatory stimuli. This response can be characterized either by increased or decreased expression and/or function, thereby impacting the local effect of sulfonamide diuretics as well as cell volume, ion composition and osmolality in a wide range of cells and pathophysiological conditions. Although, the reverse relationship i.e., the role that SLC12A family members may play in modulating local or systemic inflammatory responses remains a gap in our knowledge, several reports have recently suggested a potential direct causal relationship between NKCC1, NCC, high Na+ and hyperosmolality in a variety of inflammatory responses [122-125] mediated by local cells, T cells or macrophages [71, 87, 126-132]. Therefore, it is plausible that osmotically sensitive SLC12A members may play a direct role in the modulation of local and systemic inflammatory processes.
In this review, we will examine the current evidence linking the use of sulfonamide diuretics to anti-inflammatory and/or pro-inflammatory responses in diverse clinical settings. Additionally, we will explore potential mechanisms involving SLC12A members in regulating these responses, particularly in the context of chronic inflammatory processes associated with hypertension and MetS.
Thiazides
The potential anti-inflammatory effects of thiazide diuretics (or any medication with anti-hypertensive effect) are closely intertwined with their well-established anti-hypertensive properties, making it challenging to distinguish between the two. Hypertension is strongly linked to chronic inflammatory processes [133] and often coexists with obesity, insulin resistance, dysglycemia and dyslipidemia i.e., the components of MetS [134-137]. These conditions are in turn associated with increased tissue inflammation [12, 138] and elevated levels of inflammatory markers, including TNFα, C-reactive protein (CRP), IL1β, IL6, and IL8 [139]. As a result, it has been suggested that hydrochlorothiazide treatment may modulate inflammatory responses in hypertensive individuals [140], particularly those with components of MetS [141] or T2D [142]. However, while hydrochlorothiazide reduces hypertension, its chronic use may also exacerbate insulin resistance, glucose intolerance, ectopic fat deposition and dyslipidemia [143]. These undesired "side effects" could contribute to the progression of inflammatory-related metabolic abnormalities and increase the risk of developing T2D. Thus, while thiazides may effectively normalize hypertension, the benefits of lowering blood pressure might be counterbalanced, to some extent, by negative effects on metabolic health and inflammation irrespective of a potentially direct anti-inflammatory effect of the drug.
Chronic inflammatory processes are typically assessed by measuring one or few biomarkers including the classic acute-phase reactants [e.g., CRP and serum amyloid A (SAA)], cytokine production (e.g., TNFα, IFNγ, IL1β, IL6, IL8, IL10 and IL12 and their receptors), altered macrophage function and several biomarkers of vascular dysfunction [12, 144-148]. Notably, a comparative trial of hydrochlorothiazide and other anti-hypertensive medications resulted in no detectable CRP changes in patients with T2D [142], in hypertensive patients with inflammation [149], or in patients with mild/moderate hypertension [150]. In addition, short-term use of hydrochlorothiazide was not associated with anti-inflammatory benefits in newly diagnosed hypertensive patients [141]. Therefore, normalizing blood pressure with hydrochlorothiazide alone may have limited anti-inflammatory effects, as reflected in markers of low-grade inflammation such as SAA, CRP [136, 151, 152], or arterial stiffness [153]. Nevertheless, when used alone or in combination with other antihypertensive medications, some trials did report a general anti-inflammatory effect, suggested by reductions in CRP levels, but not in other biomarkers of inflammation, in hypertensive patients with MetS, either with [142] or without T2D [140, 154, 155]. Hence, the perceived extent of hydrochlorothiazide's anti-inflammatory actions in the clinical setting remains uncertain as it appears to depend on the specific inflammatory markers being examined, background inflammation and the metabolic status of the individuals being tested.
Thiazide-like diuretics
Unlike hydrochlorothiazide, thiazide-like drugs such as chlorthalidone and indapamide have not been associated (yet) with worsened metabolic parameters or an increased risk of T2D in the management of hypertension [143]. On the contrary, these drugs, either used alone or in combination with other treatments, have revealed an overall beneficial anti-inflammatory effect, including reductions in CRP levels among patients with refractory [156] or mild hypertension [140]. This has been supported by studies showing improvements in various markers of oxidative and inflammatory tissue damage in hypertensive rats, with or without T2D [157-160]. Consequently, normalizing blood pressure with these diuretics may reduce inflammation and oxidative stress independently of the metabolic status or background inflammation. However, it should be noted that chlorthalidone has also been linked to elevated plasma CRP levels and impaired endothelial function in poorly controlled hypertensive patients with heart failure [161]. Therefore, despite the apparently positive overall anti-inflammatory effects, there may be specific physiopathological circumstances in which these drugs could contribute to negative inflammatory outcomes.
Loop-diuretics: Furosemide and Bumetanide
There are clinical studies that have indirectly examined the anti-inflammatory effects of these diuretics in humans with chronic inflammatory conditions. For instance, inflammatory bronchoconstriction associated with asthma was shown to be alleviated by inhaled furosemide in multiple clinical trials by mechanisms assumed to be locally anti-inflammatory [162-173]. In the case of bumetanide, the evidence suggesting a potential anti-inflammatory action comparable to that attributed for furosemide in humans or in preclinical models is scarce. However, bumetanide did reduce the inflammatory and phagocytic responses of human macrophage cell lines in response to lipopolysaccharide (LPS) in vitro and inhaled nebulized bumetanide rapidly attenuated LPS-induced acute tissue inflammation and lung injury in mice [174, 175]. Importantly, systemic bumetanide or inhibition of WNKs also delayed macrophage-mediated inflammatory resolution of LPS-induced lung injury in mice [87], suggesting that the diuretic may have the potential to promote or sustain chronic local inflammatory responses, despite its initial acute anti-inflammatory effects.
Hydrochlorothiazide and thiazide-like diuretics
Contrary to the general perception, the anti-hypertensive effects of these two classes of diuretics are far more complex than commonly assumed, involving multiple mechanisms that remain largely mysterious and surprisingly unrelated to their well-known renal targets or diuretic action [176, 177]. Far less known are the molecular pathways by which thiazides and thiazide-like diuretics might directly influence inflammatory responses in hypertensive patients. In this regard, it has been proposed that, in most circumstances (see [161]), these diuretics may improve endothelial function and reduce local levels of inflammatory markers independent of the effect of blood pressure [178]. Conversely, better control of blood pressure and subsequent reduction in cardiovascular risk could counteract some background inflammatory processes in hypertensive individuals with MetS, T2D or other underlying low-grade chronic inflammatory conditions. Similarly, while hydrochlorothiazide can protect the kidneys by lowering blood pressure, it can also cause general electrolyte imbalances and hyperuricemia [179], or even local renal damage that might lead to local or disseminated inflammatory responses.
In fact, high, likely toxic concentrations of hydrochlorothiazide have been linked to renal tubular apoptosis, peritubular inflammation and renal interstitial macrophage recruitment in preclinical models [180, 181]. Moreover, similar to the chronic effect that bumetanide has on the distribution of NKCC1 in cultured cells [182], or that of furosemide on tubular NKCC2 [183], treatment with thiazides resulted in the formation of autophagosomes and redistribution of NCC from the apical plasma membrane to all over the tubular cells [181] likely precluding expected pharmacological responses. In turn, renal tubular cells, along with macrophages [88] can release IL1β in response to high glucose levels to promote and sustain local inflammation in the kidneys of obese and diabetic animal models [184] thus adding an extra layer of complexity to the inflammatory response. Lower doses of hydrochlorothiazide, however, have demonstrated an apparent beneficial anti-inflammatory effect in the kidneys of aldosterone-induced hypertensive rats [185]. Additionally, these lower doses have been shown to prevent T-cell accumulation in the kidneys and aortas of humanized mouse models of hypertension [186] and to reduce T-cell infiltration, local inflammation and arterial stiffening in the aortas of angiotensin-II-induced hypertensive mice [187]. Therefore, while high doses of hydrochlorothiazide may contribute to renal inflammation and tissue damage, lower doses may exert protective anti-inflammatory effects in hypertensive animal models without T2D or MetS, highlighting a contextual and potential dose-dependent impact of these class of diuretics on renal inflammation.
Along these lines, thiazides were also shown to reduce renal macrophage infiltration and slow renal disease progression [188]. However, hydrochlorothiazide did not affect local in vivo or in vitro levels of TNFα [189, 190] or IL1β production from neutrophils [191]. Instead, the diuretic inhibited T-cell accumulation in tissues, particularly in the thoracic lymph nodes, aorta and kidneys, in both animal models and hypertensive patients [186, 192]. Although hydrochlorothiazide (and chlorthalidone) lowered blood pressure, left ventricular hypertrophy and proteinuria, they did not impact reactive oxygen intermediates or the expression/release of chemo-attractants in blood vessels [193]. Similarly, bendroflumethiazide treatment had no effect on renal TNFα, IL6 and TGFβ1 levels in mice [194]. Notably, hydrochlorothiazide reduced IL17A, which is involved in small artery remodeling and associated to hypertension in mice [195]. Additionally, indapamide reduced oxidative stress and inflammation in the renal cortex by decreasing NFκB activation and TGFβ1 expression [196]. At any rate, it remains challenging to determine whether these effects are primarily due to the blood pressure-lowering properties of these diuretics or a direct influence on local cells, such as T-cells and the release of their associated cytokines, which are known contributors to local inflammation [197-199].
Interestingly, the finding that macrophages, vascular smooth muscle cells and endothelial cells express a thiazide-sensitive NCC [71] suggests a potential site for hydrochlorothiazide to directly modulate local inflammatory responses under physiopathological conditions. Supporting this, NCC expression in these cells is upregulated in response to pro-inflammatory cytokines such as TNFα, IL1β and IL18. Along these lines, it has been shown that IL18 and IL1β production by NCC-expressing tubular epithelial cells contribute to hypertension, renal inflammation, fibrosis and macrophage recruitment in hypertensive and diabetic animal models [184, 200]. Moreover, macrophage and/or tubular NCC may act as a receptor for IL18, potentially contributing to the modulation of local inflammatory responses [71]. Therefore, while the hypotensive effects of hydrochlorothiazide may play a role in reducing inflammation, there is growing evidence that this diuretic may also have direct effects on vascular and inflammatory cells, particularly through NCC modulation, which could influence local inflammation independently of its blood pressure-lowering action [201].
In addition, by lowering blood pressure, hydrochlorothiazide may indirectly reduce the stress on blood vessel walls, potentially mitigating vascular inflammation over time, while exerting direct effects in vascular cells and local inflammatory cells [71, 202]. These vasodilatory and local anti/inflammatory actions of hydrochlorothiazide may be mediated by mechanisms that have historically been overlooked. These include actions through carbonic anhydrases [48, 203, 204], large-conductance K+ channels [205, 206], Ca2+-activated K+ channels [207-209], K+ channels [210] and other uncharacterized mechanisms, some of them potentially related to NCC [211]. Specifically, there are at least sixteen known variants of carbonic anhydrases, which are widely expressed, sensitive to sulfonamide diuretics and involved in various inflammatory processes [212-219]. Therefore, it is plausible that some of the anti/inflammatory effects of hydrochlorothiazide are mediated by these enzymes and ion channels. Clearly, this concept could be extended to thiazide-like drugs and other sulfonamide diuretics as well, thus suggesting a broader mechanism of action for this class of drugs [196, 220-223].
Furosemide and bumetanide
The mechanisms by which aerosolized furosemide exerts acute anti-inflammatory effects in vivo [163-172] are not well understood. Some studies have shown that inhaled furosemide reduces local levels of pro-inflammatory cytokines, such as IL6, IL8 and TNFα, in both patients and animal models with respiratory and inflammatory conditions [167, 224-226]. This suggests that furosemide may have direct or indirect anti-inflammatory properties. Along these lines, furosemide has been proposed to reduce contact hypersensitivity and modulate immune responses mediated by rodent macrophages and B-cells ex vivo [227, 228]. However, these effects could be partially attributed to the secondary normalization of blood pressure, as other non-diuretic antihypertensive drugs have also been shown to reduce macrophage activation in animal models of hypertension [229, 230]. Nevertheless, consistent with the observation that high concentrations of furosemide can suppress macrophage activation [174, 231] and inhibit migration of primary neutrophils in vitro [232], the diuretic has been reported to reduce LPS-induced pro-inflammatory cytokines, such as IL6 and TNFα in macrophage-like cell lines leading to general anti-inflammatory phenotypic changes in these cells [233]. In addition, high concentrations of furosemide reduced LPS-stimulated production of TNFα, IL6 and IL8 from blood mononuclear cells to levels comparable to that found with equimolar concentrations of hydrocortisone [234, 235]. However, it is important to mention that low concentrations of sulfonamides, including furosemide, failed to modulate cytokine production from macrophage-like cell lines in response to LPS, at least in the short term [236].
Together, these data lend support to the hypothesis that NKCCs (and/or KCCs) are involved, at least in part, in the modulation of the anti-inflammatory responses attributed to loop diuretics [237]. Specifically, the loss of NKCC1 has been shown to protect mice from acute lung inflammation, edema and injury caused by bacterial infections. This protection appears to result from impaired function of alveolar, lung epithelial, or endothelial cells, rather than from an effect on local inflammatory cells of hematopoietic origin [175, 238]. In addition, the inhibition of NKCCs using relatively low concentrations of bumetanide has been found to reduce acute lung inflammation in ex vivo experiments, possibly through the suppression of epithelial NFκB-dependent local production of TNFα [239]. However, in the longer term, systemic administration of bumetanide to mice after LPS-induced lung injury, at a time when inflammation is typically expected to have resolved, led to increased levels of IL1β, IL1α, IL6 and TNFα in bronchoalveolar fluid, by mechanisms associated with impaired WNK1-OSR1/SPAK-NKCC1 signaling, which control phagocyte function and the local anti-inflammatory response [87], thus suggesting that the diuretic may actually prolong the inflammatory state.
Interestingly, TNFα is known to increase the expression of OSR/SPAK, a substrate of WNK kinases and a major regulator of NKCCs and KCCs [74], in an NFκB-dependent manner [240]. Moreover, NKCC1 deficiency leads to increased efferocytosis i.e., the process whereby apoptotic cells are cleared by phagocytes, whereas that of KCC1 reduces it [87]; and efferocytosis increase the expression of multiple genes including NKCC1, KCC1 and some of their upstream kinases [241]. Further, activation of NFκB promotes osmotic stress and cell swelling [242], which then activates WNK kinases [74]. Furthermore, the WNK-OSR/SPAK-NKCCs signaling pathway has been shown to play a crucial role in alveolar fluid clearance, mitigating inflammatory lung injury and edema in animal models [243]. Along these lines, the WNK4-OSR/SPAK-NKCC1 pathway was recently shown to modulate primary macrophage activation and reduce LPS-induced lung inflammation and injury in mice [81]. Therefore, collectively these findings suggest that bumetanide- and furosemide-sensitive NKCCs and KCCs modulate local inflammatory responses through a complex regulatory network involving osmotically- and K+/Cl–-sensitive WNKs, NFκB-driven cytokine production, macrophage activation and neutrophil migration. Importantly, monocytes and T cells also express NKCC1 and other transporters of the SLC12A family [241, 244-248], whereas NKCC1, KCC3 (as well as Cl–) have been implicated in neutrophil phagocytic activation [249-252]. Therefore, these data imply that loop-diuretics may play a direct role in the immunoinflammatory processes mediated by phagocytes at multiple levels.
Several members of the SLC12A family of Cl– loaders and extruders directly participate in the regulation of the intracellular Cl– concentration ([Cl–]i), which in most cells is kept above thermodynamic equilibrium making possible its electrogenic exit via Cl– channels [253]. In fact, Cl− ions are now recognized to play a significant role in cellular signaling, acting as an effector or even a second messenger in widely diverse biological processes (reviewed in [254]). Indeed, beyond its known influence on cell volume regulation, Cl– ions impact the membrane potential and hormone secretion [255] as well as the balance of reactive oxygen species and the pH levels both inside and outside of the cell [256]. In addition, Cl– plays a pivotal role in modulating the function of several key organelles, including endosomes, phagosomes and lysosomes [257, 258]. Further, fluctuations in [Cl–]i have been associated with a wide array of cellular functions including: i) regulation of gene expression [259, 260], such as that of IL1β [261]; ii) protein synthesis and/or function, including that of the transcription factor RUNX1 [262, 263], myeloperoxidase [264], the transient receptor potential melastatin 7 (TRPM7) [265] or the mechanistic target of rapamycin, complexes 1 and 2 (mTORC1-C2) [266]; iii) post-translational modifications, including that of WNK1, WNK4 and OSR/SPAK [75, 267, 268]; and iv) cell cycle progression, proliferation and differentiation [259, 266, 269, 270]. Importantly, inflammatory responses are initiated by local macrophages and relayed to other innate immune cells, requiring the coordinated activity of multiple mechanisms, including those previously mentioned [269, 271-274]. Given this complexity, it is not surprising that the SLC12A family of Cl– symporters may play a direct role in modulating local inflammatory responses.
In fact, recent evidence suggests that both Cl– and K+ contribute to the regulation of inflammasomes (reviewed in [275]) i.e., multi-protein complexes that act as sensors or receptors within the innate immune system [276-280]. Inflammasomes are crucial in various inflammatory conditions, including MetS and T2D [281-283]. A key function of inflammasomes is the activation of caspase-1, an enzyme that cleaves pro-inflammatory cytokines, such as IL1β and IL18, into their active forms. This activation triggers inflammatory responses aimed to combat infections and respond to host-derived damaged or misfolded proteins (i.e., irritatio). This response often leads to a form of inflammatory cell death known as pyroptosis, which serves to perpetuate inflammation until phagocytes can remove the irritants through efferocytosis [284-286]. Interestingly, activation of NKCC1 via K+/Cl–-sensitive WNK-OSR1/SPAK signaling has been shown to delay the resolution of inflammation driven by the innate immune response [287]. This delay impairs the normal function of innate immune cells (i.e., functio laesa) which further contributes to prolonged inflammation.
Current evidence, although still limited, may suggest that members of the SLC12A family of Cl– loaders and extruders may play direct and/or indirect roles in inflammatory processes by regulating local cell volume and ion homeostasis, which in turn is important for the functional regulation of inflammatory cells. This regulation also affects local cellular functions and responses including cytokine production, immune cell activation and phagocytic function. Specifically, NKCC1 and NCC have been linked to inflammation through their involvement in promoting local pro-inflammatory responses in endothelial cells and in cells of the innate immunity in different tissues. Therefore, under different physiopathological circumstances, pharmacological modulation of these cotransporters may help either mitigate inflammation, promote or sustain it, highlighting their potential role in modulating immune and inflammatory processes. Nevertheless, in the context of hypertension, MetS and T2D, untangling the potential anti- or pro-inflammatory effects of thiazide, thiazide-like and loop diuretics remains inherently complicated by the intricate relationships that exist between blood pressure, obesity, glucose intolerance, insulin resistance and chronic low-grade tissue inflammation. At the cellular and molecular levels, expanding our understanding of Cl– ion signaling is essential for unraveling the molecular and metabolic alterations observed in inflammatory conditions where Cl– transport is disrupted, as well as for better comprehending normal physiological responses such as inflammation.
We are grateful to Dr. Jeffrey Travers [Department of Pharmacology and Toxicology, Wright State University (WSU)] who helped facilitate our research, to WSU (School of Medicine) for the financial support and to Yaksh Rathod for his valuable comments and insights.
Author Contributions
The
Author participated in the conceptualization, acquisition, analysis
and interpretation of published data, drafted all versions of the
manuscript and critically review the last one for intellectual
content. The Author approved the final version of the manuscript for
publication of its content.
Funding Sources
The
present article has been partly supported by funds from the American
Diabetes Association, the National Institutes of Health (1-17-IBS-258
and R21DK113446-01 to MDiF) and the School of Medicine (WSU, 2023
Seed Grant).
Statement of Ethics
The author has no ethical conflicts to disclose.
AI Disclosure Staement
AI
tools have not been used to create scientific content in this work.
AI (ChatGPT) was only casually employed to corroborate standard
English grammar and spelling; and in few instances, to rephrase some
sentences for lexical diversity.
The author has no conflicts of interest to declare.
1 | Heidland A, Klassen A, Rutkowski P, Bahner U: The contribution of Rudolf Virchow to the concept of inflammation: what is still of importance? J Nephrol 2006;19 Suppl 10:S102-9.
|
2 | Oronsky B, Caroen S, Reid T: What Exactly Is Inflammation (and What Is It Not?). Int J Mol Sci 2022;23(23). DOI: 10.3390/ijms232314905.
https://doi.org/10.3390/ijms232314905 |
3 | Virchow RLK. Die Krankhaften Geschwulste: dreissig Vorlesungen gehalten wahrend des Wintersemesters 1862-1863 An der Universitat zu Berlin. Hirschwald; 1863.
|
4 | Libby P, Hansson GK: From Focal Lipid Storage to Systemic Inflammation: JACC Review Topic of the Week. J Am Coll Cardiol 2019;74(12):1594-607. DOI: 10.1016/j.jacc.2019.07.061.
https://doi.org/10.1016/j.jacc.2019.07.061 |
5 | McMaster WG, Kirabo A, Madhur MS, Harrison DG: Inflammation, immunity, and hypertensive end-organ damage. Circ Res 2015;116(6):1022-33. DOI: 10.1161/CIRCRESAHA.116.303697.
https://doi.org/10.1161/CIRCRESAHA.116.303697 |
6 | Copur S, Peltek IB, Mutlu A, Tanriover C, Kanbay M: A new immune disease: systemic hypertension. Clin Kidney J 2023;16(9):1403-19. DOI: 10.1093/ckj/sfad059.
https://doi.org/10.1093/ckj/sfad059 |
7 | da Silva C, Guedes IHL, de Lima JCS, Sobrinho J, Dos Santos AA: Responses Triggered by the Immune System in Hypertensive Conditions and Repercussions on Target Organ Damage: A Review. Curr Cardiol Rev 2023;19(2):e200922208959. DOI: 10.2174/1573403X18666220920090632.
https://doi.org/10.2174/1573403X18666220920090632 |
8 | Caillon A, Paradis P, Schiffrin EL: Role of immune cells in hypertension. Br J Pharmacol 2019;176(12):1818-28. DOI: 10.1111/bph.14427.
https://doi.org/10.1111/bph.14427 |
9 | Drazner MH: The progression of hypertensive heart disease. Circulation 2011;123(3):327-34. DOI: 10.1161/CIRCULATIONAHA.108.845792.
https://doi.org/10.1161/CIRCULATIONAHA.108.845792 |
10 | Katsimardou A, Imprialos K, Stavropoulos K, Sachinidis A, Doumas M, Athyros V: Hypertension in Metabolic Syndrome: Novel Insights. Curr Hypertens Rev 2020;16(1):12-18. DOI: 10.2174/1573402115666190415161813.
https://doi.org/10.2174/1573402115666190415161813 |
11 | Alberti KG, Zimmet P, Shaw J, Group IDFETFC: The metabolic syndrome--a new worldwide definition. Lancet 2005;366(9491):1059-62. DOI: 10.1016/S0140-6736(05)67402-8.
https://doi.org/10.1016/S0140-6736(05)67402-8 |
12 | Hotamisligil GS: Inflammation and metabolic disorders. Nature 2006;444(7121):860-7. DOI: 10.1038/nature05485.
https://doi.org/10.1038/nature05485 |
13 | Monteiro R, Azevedo I: Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm 2010;2010. DOI: 10.1155/2010/289645.
https://doi.org/10.1155/2010/289645 |
14 | Jin X, Wang Y: Mechanisms of Adiponectin in Regulation of Proinflammatory Cytokine Production and Migration in Macrophages. J Inflamm Res 2021;14:981-93. DOI: 10.2147/JIR.S292137.
https://doi.org/10.2147/JIR.S292137 |
15 | Gunawardena HP, Silva R, Sivakanesan R, Ranasinghe P, Katulanda P: Poor Glycaemic Control Is Associated with Increased Lipid Peroxidation and Glutathione Peroxidase Activity in Type 2 Diabetes Patients. Oxid Med Cell Longev 2019;2019:9471697. DOI: 10.1155/2019/9471697.
https://doi.org/10.1155/2019/9471697 |
16 | Smith GI, Mittendorfer B, Klein S: Metabolically healthy obesity: facts and fantasies. J Clin Invest 2019;129(10):3978-89. DOI: 10.1172/JCI129186.
https://doi.org/10.1172/JCI129186 |
17 | Saltiel AR, Olefsky JM: Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest 2017;127(1):1-4. DOI: 10.1172/JCI92035.
https://doi.org/10.1172/JCI92035 |
18 | Li H, Meng Y, He S, Tan X, Zhang Y, Zhang X, Wang L, Zheng W: Macrophages, Chronic Inflammation, and Insulin Resistance. Cells 2022;11(19). DOI: 10.3390/cells11193001.
https://doi.org/10.3390/cells11193001 |
19 | Koenen M, Hill MA, Cohen P, Sowers JR: Obesity, Adipose Tissue and Vascular Dysfunction. Circ Res 2021;128(7):951-68. DOI: 10.1161/CIRCRESAHA.121.318093.
https://doi.org/10.1161/CIRCRESAHA.121.318093 |
20 | Bomfim GF, Cau SBA, Bruno AS, Fedoce AG, Carneiro FS: Hypertension: a new treatment for an old disease? Targeting the immune system. Br J Pharmacol 2019;176(12):2028-48. DOI: 10.1111/bph.14436.
https://doi.org/10.1111/bph.14436 |
21 | Kozono M, Uto H, Ibusuki R, Arima S, Oda K, Taguchi H, Sasaki F, Nasu Y, Hashimoto S, Setoyama H, Kanmura S, Numata M, Tsubouchi H, Ido A: Antihypertensive therapy improves insulin resistance and serum levels of interleukin-6 and -10 in spontaneously hypertensive rats with steatohepatitis. Mol Med Rep 2016;14(6):5385-94. DOI: 10.3892/mmr.2016.5875.
https://doi.org/10.3892/mmr.2016.5875 |
22 | Puschett JB: Pharmacological classification and renal actions of diuretics. Cardiology 1994;84 Suppl 2:4-13. DOI: 10.1159/000176450.
https://doi.org/10.1159/000176450 |
23 | Puschett JB: Sites and mechanisms of action of diuretics in the kidney. J Clin Pharmacol 1981;21(11):564-74. DOI: 10.1002/j.1552-4604.1981.tb05665.x.
https://doi.org/10.1002/j.1552-4604.1981.tb05665.x |
24 | Gamba G: Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev 2005;85(2):423-93. DOI: 10.1152/physrev.00011.2004.
https://doi.org/10.1152/physrev.00011.2004 |
25 | Grozio A, Mills KF, Yoshino J, Bruzzone S, Sociali G, Tokizane K, Lei HC, Cunningham R, Sasaki Y, Migaud ME, Imai SI: Slc12a8 is a nicotinamide mononucleotide transporter. Nat Metab 2019;1(1):47-57. DOI: 10.1038/s42255-018-0009-4.
https://doi.org/10.1038/s42255-018-0009-4 |
26 | Caron L, Rousseau F, Gagnon E, Isenring P: Cloning and functional characterization of a cation-Cl- cotransporter-interacting protein. J Biol Chem 2000;275(41):32027-36. DOI: 10.1074/jbc.M000108200.
https://doi.org/10.1074/jbc.M000108200 |
27 | Daigle ND, Carpentier GA, Frenette-Cotton R, Simard MG, Lefoll MH, Noel M, Caron L, Noel J, Isenring P: Molecular characterization of a human cation-Cl- cotransporter (SLC12A8A, CCC9A) that promotes polyamine and amino acid transport. J Cell Physiol 2009;220(3):680-9. DOI: 10.1002/jcp.21814.
https://doi.org/10.1002/jcp.21814 |
28 | Neumann C, Rosenbaek LL, Flygaard RK, Habeck M, Karlsen JL, Wang Y, Lindorff-Larsen K, Gad HH, Hartmann R, Lyons JA, Fenton RA, Nissen P: Cryo-EM structure of the human NKCC1 transporter reveals mechanisms of ion coupling and specificity. EMBO J 2022;41(23):e110169. DOI: 10.15252/embj.2021110169.
https://doi.org/10.15252/embj.2021110169 |
29 | Chew TA, Orlando BJ, Zhang J, Latorraca NR, Wang A, Hollingsworth SA, Chen DH, Dror RO, Liao M, Feng L: Structure and mechanism of the cation-chloride cotransporter NKCC1. Nature 2019;572(7770):488-92. DOI: 10.1038/s41586-019-1438-2.
https://doi.org/10.1038/s41586-019-1438-2 |
30 | Chi X, Li X, Chen Y, Zhang Y, Su Q, Zhou Q: Cryo-EM structures of the full-length human KCC2 and KCC3 cation-chloride cotransporters. Cell Res 2021;31(4):482-84. DOI: 10.1038/s41422-020-00437-x.
https://doi.org/10.1038/s41422-020-00437-x |
31 | Xie Y, Chang S, Zhao C, Wang F, Liu S, Wang J, Delpire E, Ye S, Guo J: Structures and an activation mechanism of human potassium-chloride cotransporters. Sci Adv 2020;6(50). DOI: 10.1126/sciadv.abc5883.
https://doi.org/10.1126/sciadv.abc5883 |
32 | Reid MS, Kern DM, Brohawn SG: Cryo-EM structure of the potassium-chloride cotransporter KCC4 in lipid nanodiscs. Elife 2020;9. DOI: 10.7554/eLife.52505.
https://doi.org/10.7554/eLife.52505 |
33 | Zhang S, Meor Azlan NF, Josiah SS, Zhou J, Zhou X, Jie L, Zhang Y, Dai C, Liang D, Li P, Li Z, Wang Z, Wang Y, Ding K, Wang Y, Zhang J: The role of SLC12A family of cation-chloride cotransporters and drug discovery methodologies. J Pharm Anal 2023;13(12):1471-95. DOI: 10.1016/j.jpha.2023.09.002.
https://doi.org/10.1016/j.jpha.2023.09.002 |
34 | Garneau AP, Marcoux AA, Slimani S, Tremblay LE, Frenette-Cotton R, Mac-Way F, Isenring P: Physiological roles and molecular mechanisms of K(+) -Cl(-) cotransport in the mammalian kidney and cardiovascular system: where are we? J Physiol 2019;597(6):1451-65. DOI: 10.1113/JP276807.
https://doi.org/10.1113/JP276807 |
35 | Di Fulvio M, Alvarez-Leefmans FJ. The NKCC and NCC Genes: An in silico view. In: Alvarez-Leefmans FJ, Delpire E, editors. Physiology and Pathology of Chloride Transporters and Channels in the Nervous System: From Molecules to Diseases. Academic Press, Incorporated; 2009. p. 169-208.
https://doi.org/10.1016/B978-0-12-374373-2.00011-X |
36 | Gagnon KB, Di Fulvio M: A molecular analysis of the Na+-independent cation chloride cotransporters. Cell Physiol Biochem 2013;32(7):14-31. DOI: 10.1159/000356621.
https://doi.org/10.1159/000356621 |
37 | Shankar SS, Brater DC: Loop diuretics: from the Na-K-2Cl transporter to clinical use. Am J Physiol Renal Physiol 2003;284(1):F11-21. DOI: 10.1152/ajprenal.00119.2002.
https://doi.org/10.1152/ajprenal.00119.2002 |
38 | Marcoux AA, Tremblay LE, Slimani S, Fiola MJ, Mac-Way F, Garneau AP, Isenring P: Molecular characteristics and physiological roles of Na(+) -K(+) -Cl(-) cotransporter 2. J Cell Physiol 2021;236(3):1712-29. DOI: 10.1002/jcp.29997.
https://doi.org/10.1002/jcp.29997 |
39 | MacKenzie S, Vaitkevicius H, Lockette W: Sequencing and characterization of the human thiazide-sensitive Na-Cl cotransporter (SLC12A3) gene promoter. Biochem Biophys Res Commun 2001;282(4):991-1000. DOI: 10.1006/bbrc.2001.4673.
https://doi.org/10.1006/bbrc.2001.4673 |
40 | Limmer F, Schinner E, Castrop H, Vitzthum H, Hofmann F, Schlossmann J: Regulation of the Na(+)-K(+)-2Cl(-) cotransporter by cGMP/cGMP-dependent protein kinase I after furosemide administration. FEBS J 2015;282(19):3786-98. DOI: 10.1111/febs.13376.
https://doi.org/10.1111/febs.13376 |
41 | Tovar-Palacio C, Bobadilla NA, Cortes P, Plata C, de los Heros P, Vazquez N, Gamba G: Ion and diuretic specificity of chimeric proteins between apical Na(+)-K(+)-2Cl(-) and Na(+)-Cl(-) cotransporters. Am J Physiol Renal Physiol 2004;287(3):F570-7. DOI: 10.1152/ajprenal.00124.2004.
https://doi.org/10.1152/ajprenal.00124.2004 |
42 | Ellison DH, Loffing J: Thiazide effects and adverse effects: insights from molecular genetics. Hypertension 2009;54(2):196-202. DOI: 10.1161/HYPERTENSIONAHA.109.129171.
https://doi.org/10.1161/HYPERTENSIONAHA.109.129171 |
43 | Pickkers P, Garcha RS, Schachter M, Smits P, Hughes AD: Inhibition of carbonic anhydrase accounts for the direct vascular effects of hydrochlorothiazide. Hypertension 1999;33(4):1043-8. DOI: 10.1161/01.hyp.33.4.1043.
https://doi.org/10.1161/01.HYP.33.4.1043 |
44 | Goldfarb DS, Chan AJ, Hernandez D, Charney AN: Effect of thiazides on colonic NaCl absorption: role of carbonic anhydrase. Am J Physiol 1991;261(3 Pt 2):F452-8. DOI: 10.1152/ajprenal.1991.261.3.F452.
https://doi.org/10.1152/ajprenal.1991.261.3.F452 |
45 | Yamada KA, Tang CM: Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents. J Neurosci 1993;13(9):3904-15. DOI: 10.1523/JNEUROSCI.13-09-03904.1993.
https://doi.org/10.1523/JNEUROSCI.13-09-03904.1993 |
46 | Kucharczyk P, Albano G, Deisl C, Ho TM, Bargagli M, Anderegg M, Wueest S, Konrad D, Fuster DG: Thiazides Attenuate Insulin Secretion Through Inhibition of Mitochondrial Carbonic Anhydrase 5b in beta -Islet Cells in Mice. J Am Soc Nephrol 2023;34(7):1179-90. DOI: 10.1681/ASN.0000000000000122.
https://doi.org/10.1681/ASN.0000000000000122 |
47 | Malebari AM, Ibrahim TS, Salem IM, Salama I, Khayyat AN, Mostafa SM, El-Sabbagh OI, Darwish KM: The Anticancer Activity for the Bumetanide-Based Analogs via Targeting the Tumor-Associated Membrane-Bound Human Carbonic Anhydrase-IX Enzyme. Pharmaceuticals (Basel) 2020;13(9). DOI: 10.3390/ph13090252.
https://doi.org/10.3390/ph13090252 |
48 | Temperini C, Cecchi A, Scozzafava A, Supuran CT: Carbonic anhydrase inhibitors. Sulfonamide diuretics revisited--old leads for new applications? Org Biomol Chem 2008;6(14):2499-506. DOI: 10.1039/b800767e.
https://doi.org/10.1039/b800767e |
49 | Goto K, Kitazono T: Chloride Ions, Vascular Function and Hypertension. Biomedicines 2022;10(9). DOI: 10.3390/biomedicines10092316.
https://doi.org/10.3390/biomedicines10092316 |
50 | Zhao Y, Roy K, Vidossich P, Cancedda L, De Vivo M, Forbush B, Cao E: Structural basis for inhibition of the Cation-chloride cotransporter NKCC1 by the diuretic drug bumetanide. Nat Commun 2022;13(1):2747. DOI: 10.1038/s41467-022-30407-3.
https://doi.org/10.1038/s41467-022-30407-3 |
51 | Hampel P, Romermann K, MacAulay N, Loscher W: Azosemide is more potent than bumetanide and various other loop diuretics to inhibit the sodium-potassium-chloride-cotransporter human variants hNKCC1A and hNKCC1B. Sci Rep 2018;8(1):9877. DOI: 10.1038/s41598-018-27995-w.
https://doi.org/10.1038/s41598-018-27995-w |
52 | Lykke K, Tollner K, Romermann K, Feit PW, Erker T, MacAulay N, Loscher W: Structure-activity relationships of bumetanide derivatives: correlation between diuretic activity in dogs and inhibition of human NKCC2 variant A. Br J Pharmacol 2015. DOI: 10.1111/bph.13231.
https://doi.org/10.1111/bph.13231 |
53 | Lykke K, Tollner K, Romermann K, Feit PW, Erker T, MacAulay N, Loscher W: Structure-activity relationships of bumetanide derivatives: correlation between diuretic activity in dogs and inhibition of the human NKCC2A transporter. Br J Pharmacol 2015;172(18):4469-80. DOI: 10.1111/bph.13231.
https://doi.org/10.1111/bph.13231 |
54 | Hegde RS, Palfrey HC: Ionic effects on bumetanide binding to the activated Na/K/2Cl cotransporter: selectivity and kinetic properties of ion binding sites. J Membr Biol 1992;126(1):27-37.
https://doi.org/10.1007/BF00233458 |
55 | Haas M, McManus TJ: Bumetanide inhibits (Na + K + 2Cl) co-transport at a chloride site. Am J Physiol 1983;245(3):C235-40.
https://doi.org/10.1152/ajpcell.1983.245.3.C235 |
56 | Popowicz P, Simmons NL: [3H]bumetanide binding and inhibition of Na+ + K+ + Cl- co-transport: demonstration of specificity by the use of MDCK cells deficient in co-transport activity. Q J Exp Physiol 1988;73(2):193-202.
https://doi.org/10.1113/expphysiol.1988.sp003132 |
57 | Adragna NC, Di Fulvio M, Lauf PK: Regulation of K-Cl cotransport: from function to genes. J Membr Biol 2004;201(3):109-37. DOI: 10.1007/s00232-004-0695-6.
https://doi.org/10.1007/s00232-004-0695-6 |
58 | Hiki K, D'Andrea RJ, Furze J, Crawford J, Woollatt E, Sutherland GR, Vadas MA, Gamble JR: Cloning, characterization, and chromosomal location of a novel human K+-Cl- cotransporter. J Biol Chem 1999;274(15):10661-7. DOI: 10.1074/jbc.274.15.10661.
https://doi.org/10.1074/jbc.274.15.10661 |
59 | Gillen CM, Brill S, Payne JA, Forbush B, 3rd: Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat, and human. A new member of the cation-chloride cotransporter family. J Biol Chem 1996;271(27):16237-44. DOI: 10.1074/jbc.271.27.16237.
https://doi.org/10.1074/jbc.271.27.16237 |
60 | Kaji D: Volume-sensitive K transport in human erythrocytes. J Gen Physiol 1986;88(6):719-38. DOI: 10.1085/jgp.88.6.719.
https://doi.org/10.1085/jgp.88.6.719 |
61 | Sands JM, Knepper MA, Spring KR: Na-K-Cl cotransport in apical membrane of rabbit renal papillary surface epithelium. Am J Physiol 1986;251(3 Pt 2):F475-84. DOI: 10.1152/ajprenal.1986.251.3.F475.
https://doi.org/10.1152/ajprenal.1986.251.3.F475 |
62 | Schlatter E, Greger R, Weidtke C: Effect of "high ceiling" diuretics on active salt transport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Correlation of chemical structure and inhibitory potency. Pflugers Arch 1983;396(3):210-7. DOI: 10.1007/BF00587857.
https://doi.org/10.1007/BF00587857 |
63 | Karlsson M, Zhang C, Mear L, Zhong W, Digre A, Katona B, Sjostedt E, Butler L, Odeberg J, Dusart P, Edfors F, Oksvold P, von Feilitzen K, Zwahlen M, Arif M, Altay O, Li X, Ozcan M, Mardinoglu A, Fagerberg L, Mulder J, Luo Y, Ponten F, Uhlen M, Lindskog C: A single-cell type transcriptomics map of human tissues. Sci Adv 2021;7(31). DOI: 10.1126/sciadv.abh2169.
https://doi.org/10.1126/sciadv.abh2169 |
64 | Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F: Proteomics. Tissue-based map of the human proteome. Science 2015;347(6220):1260419. DOI: 10.1126/science.1260419.
https://doi.org/10.1126/science.1260419 |
65 | Di Fulvio M, Alvarez-Leefmans FJ. The NKCC and NCC Genes: An in silico view. In: Alvarez-Leefmans FJ, Delpire E, editors. Physiology and Pathology of Chloride Transporters and Channels in the Nervous System: From Molecules to Diseases. Academic Press, Incorporated; 2009. p. 169-208.
https://doi.org/10.1016/B978-0-12-374373-2.00011-X |
66 | Zhu JX, Xue H, Ji T, Xing Y: Cellular localization of NKCC2 and its possible role in the Cl(-) absorption in the rat and human distal colonic epithelia. Transl Res 2011;158(3):146-54. DOI: 10.1016/j.trsl.2011.04.003.
https://doi.org/10.1016/j.trsl.2011.04.003 |
67 | Alshahrani S, Alvarez-Leefmans F, Di Fulvio M: Expression of the Slc12a1 Gene in Pancreatic β-cells: Molecular Characterization and in silico Analysis. Cell Physiol Biochem 2012;30(1):95-112. DOI: 10.1159/000339050.
https://doi.org/10.1159/000339050 |
68 | Kakigi A, Nishimura M, Takeda T, Taguchi D, Nishioka R: Expression of aquaporin1, 3, and 4, NKCC1, and NKCC2 in the human endolymphatic sac. Auris Nasus Larynx 2009;36(2):135-9.
https://doi.org/10.1016/j.anl.2008.04.012 |
69 | Nishimura M, Kakigi A, Takeda T, Takeda S, Doi K: Expression of aquaporins, vasopressin type 2 receptor, and Na+K+Cl cotransporters in the rat endolymphatic sac. Acta Otolaryngol 2009;129(8):812-8. DOI: 10.1080/00016480802441754.
https://doi.org/10.1080/00016480802441754 |
70 | Akiyama K, Miyashita T, Mori T, Mori N: Expression of the Na+-K+-2Cl- cotransporter in the rat endolymphatic sac. Biochem Biophys Res Commun 2007;364(4):913-7.
https://doi.org/10.1016/j.bbrc.2007.10.107 |
71 | Wang J, Sun C, Gerdes N, Liu C, Liao M, Liu J, Shi MA, He A, Zhou Y, Sukhova GK, Chen H, Cheng XW, Kuzuya M, Murohara T, Zhang J, Cheng X, Jiang M, Shull GE, Rogers S, Yang CL, Ke Q, Jelen S, Bindels R, Ellison DH, Jarolim P, Libby P, Shi GP: Interleukin 18 function in atherosclerosis is mediated by the interleukin 18 receptor and the Na-Cl co-transporter. Nat Med 2015;21(7):820-6. DOI: 10.1038/nm.3890.
https://doi.org/10.1038/nm.3890 |
72 | Zhang X, Luo S, Wang M, Cao Q, Zhang Z, Huang Q, Li J, Deng Z, Liu T, Liu CL, Meppen M, Vromman A, Flavell RA, Hotamisligil GS, Liu J, Libby P, Liu Z, Shi GP: Differential IL18 signaling via IL18 receptor and Na-Cl co-transporter discriminating thermogenesis and glucose metabolism regulation. Nat Commun 2022;13(1):7582. DOI: 10.1038/s41467-022-35256-8.
https://doi.org/10.1038/s41467-022-35256-8 |
73 | Zhang X, Luo S, Wang M, Huang Q, Fang W, Li J, Liu T, Zhang Y, Deng Z, Liu CL, Guan S, Ayala JE, Flavell RA, Kulkarni RN, Libby P, Guo J, Liu Z, Shi GP: IL18 signaling causes islet beta cell development and insulin secretion via different receptors on acinar and beta cells. Dev Cell 2022;57(12):1496-511 e6. DOI: 10.1016/j.devcel.2022.05.013.
https://doi.org/10.1016/j.devcel.2022.05.013 |
74 | Alessi DR, Zhang J, Khanna A, Hochdorfer T, Shang Y, Kahle KT: The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride cotransporters. Sci Signal 2014;7(334):re3. DOI: 10.1126/scisignal.2005365.
https://doi.org/10.1126/scisignal.2005365 |
75 | Shekarabi M, Zhang J, Khanna AR, Ellison DH, Delpire E, Kahle KT: WNK Kinase Signaling in Ion Homeostasis and Human Disease. Cell Metab 2017;25(2):285-99. DOI: 10.1016/j.cmet.2017.01.007.
https://doi.org/10.1016/j.cmet.2017.01.007 |
76 | Johnsen LO, Friis KA, Damkier HH: In vitro investigation of the effect of proinflammatory cytokines on mouse choroid plexus membrane transporters Ncbe and NKCC1. Fluids Barriers CNS 2023;20(1):71. DOI: 10.1186/s12987-023-00474-9.
https://doi.org/10.1186/s12987-023-00474-9 |
77 | Wu CP, Huang KL, Peng CK, Lan CC: Acute Hyperglycemia Aggravates Lung Injury via Activation of the SGK1-NKCC1 Pathway. Int J Mol Sci 2020;21(13). DOI: 10.3390/ijms21134803.
https://doi.org/10.3390/ijms21134803 |
78 | Sekii Y, Kiuchi H, Takezawa K, Imanaka T, Kuribayashi S, Okada K, Inagaki Y, Ueda N, Fukuhara S, Imamura R, Negoro H, Nonomura N: Dietary salt with nitric oxide deficiency induces nocturnal polyuria in mice via hyperactivation of intrarenal angiotensin II-SPAK-NCC pathway. Commun Biol 2022;5(1):175. DOI: 10.1038/s42003-022-03104-6.
https://doi.org/10.1038/s42003-022-03104-6 |
79 | Gao Y, Stuart D, Takahishi T, Kohan DE: Nephron-Specific Disruption of Nitric Oxide Synthase 3 Causes Hypertension and Impaired Salt Excretion. J Am Heart Assoc 2018;7(14). DOI: 10.1161/JAHA.118.009236.
https://doi.org/10.1161/JAHA.118.009236 |
80 | Kim MJ, Yang HJ, Kim Y, Kang I, Kim SS, Cho YW: Role of nitric oxide and WNK-SPAK/OSR1-KCC2 signaling in daily changes in GABAergic inhibition in the rat dorsal raphe neurons. Neuropharmacology 2018;135:355-67. DOI: 10.1016/j.neuropharm.2018.03.035.
https://doi.org/10.1016/j.neuropharm.2018.03.035 |
81 | Hung CM, Peng CK, Yang SS, Shui HA, Huang KL: WNK4-SPAK modulates lipopolysaccharide-induced macrophage activation. Biochem Pharmacol 2020;171:113738. DOI: 10.1016/j.bcp.2019.113738.
https://doi.org/10.1016/j.bcp.2019.113738 |
82 | Reid AY, Riazi K, Campbell Teskey G, Pittman QJ: Increased excitability and molecular changes in adult rats after a febrile seizure. Epilepsia 2013;54(4):e45-8. DOI: 10.1111/epi.12061.
https://doi.org/10.1111/epi.12061 |
83 | Gong Y, Wu M, Shen J, Tang J, Li J, Xu J, Dang B, Chen G: Inhibition of the NKCC1/NF-kappaB Signaling Pathway Decreases Inflammation and Improves Brain Edema and Nerve Cell Apoptosis in an SBI Rat Model. Front Mol Neurosci 2021;14:641993. DOI: 10.3389/fnmol.2021.641993.
https://doi.org/10.3389/fnmol.2021.641993 |
84 | Zhang M, Cui Z, Cui H, Wang Y, Zhong C: Astaxanthin protects astrocytes against trauma-induced apoptosis through inhibition of NKCC1 expression via the NF-kappaB signaling pathway. BMC Neurosci 2017;18(1):42. DOI: 10.1186/s12868-017-0358-z.
https://doi.org/10.1186/s12868-017-0358-z |
85 | Gomez CD, Read J, Acharjee S, Pittman QJ: Early Life Inflammation Increases CA1 Pyramidal Neuron Excitability in a Sex and Age Dependent Manner through a Chloride Homeostasis Disruption. J Neurosci 2019;39(37):7244-59. DOI: 10.1523/JNEUROSCI.2973-18.2019.
https://doi.org/10.1523/JNEUROSCI.2973-18.2019 |
86 | Toth K, Lenart N, Berki P, Fekete R, Szabadits E, Posfai B, Cserep C, Alatshan A, Benko S, Kiss D, Hubner CA, Gulyas A, Kaila K, Kornyei Z, Denes A: The NKCC1 ion transporter modulates microglial phenotype and inflammatory response to brain injury in a cell-autonomous manner. PLoS Biol 2022;20(1):e3001526. DOI: 10.1371/journal.pbio.3001526.
https://doi.org/10.1371/journal.pbio.3001526 |
87 | Perry JSA, Morioka S, Medina CB, Iker Etchegaray J, Barron B, Raymond MH, Lucas CD, Onengut-Gumuscu S, Delpire E, Ravichandran KS: Interpreting an apoptotic corpse as anti-inflammatory involves a chloride sensing pathway. Nat Cell Biol 2019;21(12):1532-43. DOI: 10.1038/s41556-019-0431-1.
https://doi.org/10.1038/s41556-019-0431-1 |
88 | Lopez-Castejon G, Brough D: Understanding the mechanism of IL-1beta secretion. Cytokine Growth Factor Rev 2011;22(4):189-95. DOI: 10.1016/j.cytogfr.2011.10.001.
https://doi.org/10.1016/j.cytogfr.2011.10.001 |
89 | Lawrence T: The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 2009;1(6):a001651. DOI: 10.1101/cshperspect.a001651.
https://doi.org/10.1101/cshperspect.a001651 |
90 | Miller FJ, Jr., Filali M, Huss GJ, Stanic B, Chamseddine A, Barna TJ, Lamb FS: Cytokine activation of nuclear factor kappa B in vascular smooth muscle cells requires signaling endosomes containing Nox1 and ClC-3. Circ Res 2007;101(7):663-71. DOI: 10.1161/CIRCRESAHA.107.151076.
https://doi.org/10.1161/CIRCRESAHA.107.151076 |
91 | Pelletier L, Savignac M: Involvement of ion channels in allergy. Curr Opin Immunol 2018;52:60-67. DOI: 10.1016/j.coi.2018.04.006.
https://doi.org/10.1016/j.coi.2018.04.006 |
92 | Eisenhut M, Wallace H: Ion channels in inflammation. Pflugers Arch 2011;461(4):401-21. DOI: 10.1007/s00424-010-0917-y.
https://doi.org/10.1007/s00424-010-0917-y |
93 | Martinez-Augustin O, Romero-Calvo I, Suarez MD, Zarzuelo A, de Medina FS: Molecular bases of impaired water and ion movements in inflammatory bowel diseases. Inflamm Bowel Dis 2009;15(1):114-27. DOI: 10.1002/ibd.20579.
https://doi.org/10.1002/ibd.20579 |
94 | Norlander AE, Madhur MS: Inflammatory cytokines regulate renal sodium transporters: how, where, and why? Am J Physiol Renal Physiol 2017;313(2):F141-F44. DOI: 10.1152/ajprenal.00465.2016.
https://doi.org/10.1152/ajprenal.00465.2016 |
95 | King SJ, Bunz M, Chappell A, Scharl M, Docherty M, Jung B, Lytle C, McCole DF: AMPK mediates inhibition of electrolyte transport and NKCC1 activity by reactive oxygen species. Am J Physiol Gastrointest Liver Physiol 2019;317(2):G171-G81. DOI: 10.1152/ajpgi.00317.2018.
https://doi.org/10.1152/ajpgi.00317.2018 |
96 | Pieraut S, Lucas O, Sangari S, Sar C, Boudes M, Bouffi C, Noel D, Scamps F: An autocrine neuronal interleukin-6 loop mediates chloride accumulation and NKCC1 phosphorylation in axotomized sensory neurons. J Neurosci 2011;31(38):13516-26. DOI: 10.1523/JNEUROSCI.3382-11.2011.
https://doi.org/10.1523/JNEUROSCI.3382-11.2011 |
97 | Funk K, Woitecki A, Franjic-Wurtz C, Gensch T, Mohrlen F, Frings S: Modulation of chloride homeostasis by inflammatory mediators in dorsal root ganglion neurons. Mol Pain 2008;4:32. DOI: 10.1186/1744-8069-4-32.
https://doi.org/10.1186/1744-8069-4-32 |
98 | Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J: Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci 2014;15(10):637-54. DOI: 10.1038/nrn3819.
https://doi.org/10.1038/nrn3819 |
99 | Barrett KE, McCole DF: Hydrogen peroxide scavenger, catalase, alleviates ion transport dysfunction in murine colitis. Clin Exp Pharmacol Physiol 2016;43(11):1097-106. DOI: 10.1111/1440-1681.12646.
https://doi.org/10.1111/1440-1681.12646 |
100 | Chappell AE, Bunz M, Smoll E, Dong H, Lytle C, Barrett KE, McCole DF: Hydrogen peroxide inhibits Ca2+-dependent chloride secretion across colonic epithelial cells via distinct kinase signaling pathways and ion transport proteins. FASEB J 2008;22(6):2023-36. DOI: 10.1096/fj.07-099697.
https://doi.org/10.1096/fj.07-099697 |
101 | Markossian S, Kreydiyyeh SI: TNF-alpha down-regulates the Na+-K+ ATPase and the Na+-K+-2Cl-cotransporter in the rat colon via PGE2. Cytokine 2005;30(6):319-27. DOI: 10.1016/j.cyto.2004.11.009.
https://doi.org/10.1016/j.cyto.2004.11.009 |
102 | Bertelsen LS, Eckmann L, Barrett KE: Prolonged interferon-gamma exposure decreases ion transport, NKCC1, and Na+-K+-ATPase expression in human intestinal xenografts in vivo. Am J Physiol Gastrointest Liver Physiol 2004;286(1):G157-65. DOI: 10.1152/ajpgi.00227.2003.
https://doi.org/10.1152/ajpgi.00227.2003 |
103 | Kreydiyyeh SI, Al-Sadi R: The mechanism by which interleukin-1 beta reduces net fluid absorption from the rat colon. Eur Cytokine Netw 2002;13(3):358-63.
|
104 | Koumangoye R, Omer S, Kabeer MH, Delpire E: Novel Human NKCC1 Mutations Cause Defects in Goblet Cell Mucus Secretion and Chronic Inflammation. Cell Mol Gastroenterol Hepatol 2020;9(2):239-55. DOI: 10.1016/j.jcmgh.2019.10.006.
https://doi.org/10.1016/j.jcmgh.2019.10.006 |
105 | Ji MJ, Ryu HJ, Hong JH: Synovial Fluid of Patient With Rheumatoid Arthritis Enhanced Osmotic Sensitivity Through the Cytotoxic Edema Module in Synoviocytes. Front Cell Dev Biol 2021;9:700879. DOI: 10.3389/fcell.2021.700879.
https://doi.org/10.3389/fcell.2021.700879 |
106 | Huang LQ, Zhu GF, Deng YY, Jiang WQ, Fang M, Chen CB, Cao W, Wen MY, Han YL, Zeng HK: Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-alpha and IL-1beta-induced Na-K-Cl Cotransporter up-regulation. J Neuroinflammation 2014;11:102. DOI: 10.1186/1742-2094-11-102.
https://doi.org/10.1186/1742-2094-11-102 |
107 | Topper JN, Wasserman SM, Anderson KR, Cai J, Falb D, Gimbrone MA, Jr.: Expression of the bumetanide-sensitive Na-K-Cl cotransporter BSC2 is differentially regulated by fluid mechanical and inflammatory cytokine stimuli in vascular endothelium. J Clin Invest 1997;99(12):2941-9. DOI: 10.1172/JCI119489.
https://doi.org/10.1172/JCI119489 |
108 | Lolansen SD, Rostgaard N, Barbuskaite D, Capion T, Olsen MH, Norager NH, Vilhardt F, Andreassen SN, Toft-Bertelsen TL, Ye F, Juhler M, Keep RF, MacAulay N: Posthemorrhagic hydrocephalus associates with elevated inflammation and CSF hypersecretion via activation of choroidal transporters. Fluids Barriers CNS 2022;19(1):62. DOI: 10.1186/s12987-022-00360-w.
https://doi.org/10.1186/s12987-022-00360-w |
109 | Haque MZ, Ortiz PA: Superoxide increases surface NKCC2 in the rat thick ascending limbs via PKC. Am J Physiol Renal Physiol 2019;317(1):F99-F106. DOI: 10.1152/ajprenal.00232.2018.
https://doi.org/10.1152/ajprenal.00232.2018 |
110 | Jayakumar AR, Liu M, Moriyama M, Ramakrishnan R, Forbush B, 3rd, Reddy PV, Norenberg MD: Na-K-Cl Cotransporter-1 in the mechanism of ammonia-induced astrocyte swelling. J Biol Chem 2008;283(49):33874-82. DOI: 10.1074/jbc.M804016200.
https://doi.org/10.1074/jbc.M804016200 |
111 | Alahmari KA, Prabhakaran H, Prabhakaran K, Chandramoorthy HC, Ramugounder R: Antioxidants and NOS inhibitors selectively targets manganese-induced cell volume via Na-K-Cl cotransporter-1 in astrocytes. Brain Res 2015;1610:69-79. DOI: 10.1016/j.brainres.2015.03.035.
https://doi.org/10.1016/j.brainres.2015.03.035 |
112 | Wangensteen R, Rodriguez-Gomez I, Moreno JM, Vargas F, Alvarez-Guerra M: Chronic nitric oxide blockade modulates renal Na-K-2Cl cotransporters. J Hypertens 2006;24(12):2451-8. DOI: 10.1097/01.hjh.0000251907.93298.44.
https://doi.org/10.1097/01.hjh.0000251907.93298.44 |
113 | Turban S, Wang XY, Knepper MA: Regulation of NHE3, NKCC2, and NCC abundance in kidney during aldosterone escape phenomenon: role of NO. Am J Physiol Renal Physiol 2003;285(5):F843-51. DOI: 10.1152/ajprenal.00110.2003.
https://doi.org/10.1152/ajprenal.00110.2003 |
114 | He H, Podymow T, Zimpelmann J, Burns KD: NO inhibits Na+-K+-2Cl- cotransport via a cytochrome P-450-dependent pathway in renal epithelial cells (MMDD1). Am J Physiol Renal Physiol 2003;284(6):F1235-44. DOI: 10.1152/ajprenal.00192.2002.
https://doi.org/10.1152/ajprenal.00192.2002 |
115 | Akar F, Skinner E, Klein JD, Jena M, Paul RJ, O'Neill WC: Vasoconstrictors and nitrovasodilators reciprocally regulate the Na+-K+-2Cl- cotransporter in rat aorta. Am J Physiol 1999;276(6):C1383-90. DOI: 10.1152/ajpcell.1999.276.6.C1383.
https://doi.org/10.1152/ajpcell.1999.276.6.C1383 |
116 | Herrera M, Ortiz PA, Garvin JL: Regulation of thick ascending limb transport: role of nitric oxide. Am J Physiol Renal Physiol 2006;290(6):F1279-84. DOI: 10.1152/ajprenal.00465.2005.
https://doi.org/10.1152/ajprenal.00465.2005 |
117 | Plato CF, Stoos BA, Wang D, Garvin JL: Endogenous nitric oxide inhibits chloride transport in the thick ascending limb. Am J Physiol 1999;276(1):F159-63. DOI: 10.1152/ajprenal.1999.276.1.F159.
https://doi.org/10.1152/ajprenal.1999.276.1.F159 |
118 | Di Fulvio M, Lauf PK, Adragna NC: The NO signaling pathway differentially regulates KCC3a and KCC3b mRNA expression. Nitric Oxide 2003;9(3):165-71. DOI: 10.1016/j.niox.2003.11.004.
https://doi.org/10.1016/j.niox.2003.11.004 |
119 | Di Fulvio M, Lauf PK, Shah S, Adragna NC: NONOates regulate KCl cotransporter-1 and -3 mRNA expression in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2003;284(5):H1686-92. DOI: 10.1152/ajpheart.00710.2002.
https://doi.org/10.1152/ajpheart.00710.2002 |
120 | Di Fulvio M, Lauf PK, Adragna NC: Nitric oxide signaling pathway regulates potassium chloride cotransporter-1 mRNA expression in vascular smooth muscle cells. J Biol Chem 2001;276(48):44534-40. DOI: 10.1074/jbc.M104899200.
https://doi.org/10.1074/jbc.M104899200 |
121 | Di Fulvio M, Lincoln TM, Lauf PK, Adragna NC: Protein kinase G regulates potassium chloride cotransporter-4 [corrected] expression in primary cultures of rat vascular smooth muscle cells. J Biol Chem 2001;276(24):21046-52. DOI: 10.1074/jbc.M100901200.
https://doi.org/10.1074/jbc.M100901200 |
122 | Shapiro L, Dinarello CA: Hyperosmotic stress as a stimulant for proinflammatory cytokine production. Exp Cell Res 1997;231(2):354-62. DOI: 10.1006/excr.1997.3476.
https://doi.org/10.1006/excr.1997.3476 |
123 | Muller DN, Geisberger S, Kleinewietfeld M, Jantsch J: Salt sensitivity includes effects on immune cell signalling and metabolism. Nat Rev Immunol 2023;23(6):341-42. DOI: 10.1038/s41577-023-00881-x.
https://doi.org/10.1038/s41577-023-00881-x |
124 | Muller DN, Wilck N, Haase S, Kleinewietfeld M, Linker RA: Sodium in the microenvironment regulates immune responses and tissue homeostasis. Nat Rev Immunol 2019;19(4):243-54. DOI: 10.1038/s41577-018-0113-4.
https://doi.org/10.1038/s41577-018-0113-4 |
125 | Wilck N, Balogh A, Marko L, Bartolomaeus H, Muller DN: The role of sodium in modulating immune cell function. Nat Rev Nephrol 2019;15(9):546-58. DOI: 10.1038/s41581-019-0167-y.
https://doi.org/10.1038/s41581-019-0167-y |
126 | Schwartz L, Guais A, Pooya M, Abolhassani M: Is inflammation a consequence of extracellular hyperosmolarity? J Inflamm (Lond) 2009;6:21. DOI: 10.1186/1476-9255-6-21.
https://doi.org/10.1186/1476-9255-6-21 |
127 | Matthias J, Maul J, Noster R, Meinl H, Chao YY, Gerstenberg H, Jeschke F, Gasparoni G, Welle A, Walter J, Nordstrom K, Eberhardt K, Renisch D, Donakonda S, Knolle P, Soll D, Grabbe S, Garzorz-Stark N, Eyerich K, Biedermann T, Baumjohann D, Zielinski CE: Sodium chloride is an ionic checkpoint for human T(H)2 cells and shapes the atopic skin microenvironment. Sci Transl Med 2019;11(480). DOI: 10.1126/scitranslmed.aau0683.
https://doi.org/10.1126/scitranslmed.aau0683 |
128 | Ciou JJ, Chien MW, Hsu CY, Liu YW, Dong JL, Tsai SY, Yang SS, Lin SH, Yen BL, Fu SH, Sytwu HK: Excess Salt Intake Activates IL-21-Dominant Autoimmune Diabetogenesis via a Salt-Regulated Ste20-Related Proline/Alanine-Rich Kinase in CD4 T Cells. Diabetes 2024;73(4):592-603. DOI: 10.2337/db23-0599.
https://doi.org/10.2337/db23-0599 |
129 | Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, Muller DN, Hafler DA: Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 2013;496(7446):518-22. DOI: 10.1038/nature11868.
https://doi.org/10.1038/nature11868 |
130 | Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, Regev A, Kuchroo VK: Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 2013;496(7446):513-7. DOI: 10.1038/nature11984.
https://doi.org/10.1038/nature11984 |
131 | Eil R, Vodnala SK, Clever D, Klebanoff CA, Sukumar M, Pan JH, Palmer DC, Gros A, Yamamoto TN, Patel SJ, Guittard GC, Yu Z, Carbonaro V, Okkenhaug K, Schrump DS, Linehan WM, Roychoudhuri R, Restifo NP: Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 2016;537(7621):539-43. DOI: 10.1038/nature19364.
https://doi.org/10.1038/nature19364 |
132 | Krampert L, Ossner T, Schroder A, Schatz V, Jantsch J: Simultaneous Increases in Intracellular Sodium and Tonicity Boost Antimicrobial Activity of Macrophages. Cells 2023;12(24). DOI: 10.3390/cells12242816.
https://doi.org/10.3390/cells12242816 |
133 | Davey Smith G, Lawlor DA, Harbord R, Timpson N, Rumley A, Lowe GD, Day IN, Ebrahim S: Association of C-reactive protein with blood pressure and hypertension: life course confounding and mendelian randomization tests of causality. Arterioscler Thromb Vasc Biol 2005;25(5):1051-6. DOI: 10.1161/01.ATV.0000160351.95181.d0.
https://doi.org/10.1161/01.ATV.0000160351.95181.d0 |
134 | Nguyen BA, Alexander MR, Harrison DG: Immune mechanisms in the pathophysiology of hypertension. Nat Rev Nephrol 2024;20(8):530-40. DOI: 10.1038/s41581-024-00838-w.
https://doi.org/10.1038/s41581-024-00838-w |
135 | Parhofer KG, Birkeland KI, DeFronzo R, Del Prato S, Bhaumik A, Ptaszynska A: Irbesartan has no short-term effect on insulin resistance in hypertensive patients with additional cardiometabolic risk factors (i-RESPOND). Int J Clin Pract 2010;64(2):160-8. DOI: 10.1111/j.1742-1241.2009.02246.x.
https://doi.org/10.1111/j.1742-1241.2009.02246.x |
136 | Eriksson JW, Jansson PA, Carlberg B, Hagg A, Kurland L, Svensson MK, Ahlstrom H, Strom C, Lonn L, Ojbrandt K, Johansson L, Lind L: Hydrochlorothiazide, but not Candesartan, aggravates insulin resistance and causes visceral and hepatic fat accumulation: the mechanisms for the diabetes preventing effect of Candesartan (MEDICA) Study. Hypertension 2008;52(6):1030-7. DOI: 10.1161/HYPERTENSIONAHA.108.119404.
https://doi.org/10.1161/HYPERTENSIONAHA.108.119404 |
137 | Varughese GI, Lip GY: Hypertension in patients with type-II diabetes: relation to urinary albumin excretion, endothelial function and inflammation. J Hum Hypertens 2005;19(6):421-4. DOI: 10.1038/sj.jhh.1001833.
https://doi.org/10.1038/sj.jhh.1001833 |
138 | Wu H, Ballantyne CM: Metabolic Inflammation and Insulin Resistance in Obesity. Circ Res 2020;126(11):1549-64. DOI: 10.1161/CIRCRESAHA.119.315896.
https://doi.org/10.1161/CIRCRESAHA.119.315896 |
139 | Sjoholm A, Nystrom T: Inflammation and the etiology of type 2 diabetes. Diabetes Metab Res Rev 2006;22(1):4-10. DOI: 10.1002/dmrr.568.
https://doi.org/10.1002/dmrr.568 |
140 | Fonseca HA, Fonseca FA, Lins LC, Monteiro AM, Bianco HT, Brandao SA, Povoa RM, Juliano L, Figueiredo-Neto AM, Boschcov P, Gidlund M, Izar MC: Antihypertensive therapy increases natural immunity response in hypertensive patients. Life Sci 2015;143:124-30. DOI: 10.1016/j.lfs.2015.10.030.
https://doi.org/10.1016/j.lfs.2015.10.030 |
141 | Rahman ST, Lauten WB, Khan QA, Navalkar S, Parthasarathy S, Khan BV: Effects of eprosartan versus hydrochlorothiazide on markers of vascular oxidation and inflammation and blood pressure (renin-angiotensin system antagonists, oxidation, and inflammation). Am J Cardiol 2002;89(6):686-90. DOI: 10.1016/s0002-9149(01)02340-2.
https://doi.org/10.1016/S0002-9149(01)02340-2 |
142 | Schram MT, van Ittersum FJ, Spoelstra-de Man A, van Dijk RA, Schalkwijk CG, Ijzerman RG, Twisk JW, Stehouwer CD: Aggressive antihypertensive therapy based on hydrochlorothiazide, candesartan or lisinopril as initial choice in hypertensive type II diabetic individuals: effects on albumin excretion, endothelial function and inflammation in a double-blind, randomized clinical trial. J Hum Hypertens 2005;19(6):429-37. DOI: 10.1038/sj.jhh.1001812.
https://doi.org/10.1038/sj.jhh.1001812 |
143 | Di Fulvio M, Rathod YD, Khader S: Exploring the Metabolic Effects of Thiazide, Thiazide-Like, and Loop Diuretics: A Topic Review. Under review 2024.
|
144 | Menzel A, Samouda H, Dohet F, Loap S, Ellulu MS, Bohn T: Common and Novel Markers for Measuring Inflammation and Oxidative Stress Ex Vivo in Research and Clinical Practice-Which to Use Regarding Disease Outcomes? Antioxidants (Basel) 2021;10(3). DOI: 10.3390/antiox10030414.
https://doi.org/10.3390/antiox10030414 |
145 | Luo JQ, Ren H, Chen MY, Zhao Q, Yang N, Liu Q, Gao YC, Zhou HH, Huang WH, Zhang W: Hydrochlorothiazide-induced glucose metabolism disorder is mediated by the gut microbiota via LPS-TLR4-related macrophage polarization. iScience 2023;26(7):107130. DOI: 10.1016/j.isci.2023.107130.
https://doi.org/10.1016/j.isci.2023.107130 |
146 | Steyers CM, 3rd, Miller FJ, Jr.: Endothelial dysfunction in chronic inflammatory diseases. Int J Mol Sci 2014;15(7):11324-49. DOI: 10.3390/ijms150711324.
https://doi.org/10.3390/ijms150711324 |
147 | Wang L, Cheng CK, Yi M, Lui KO, Huang Y: Targeting endothelial dysfunction and inflammation. J Mol Cell Cardiol 2022;168:58-67. DOI: 10.1016/j.yjmcc.2022.04.011.
https://doi.org/10.1016/j.yjmcc.2022.04.011 |
148 | Leite AR, Borges-Canha M, Cardoso R, Neves JS, Castro-Ferreira R, Leite-Moreira A: Novel Biomarkers for Evaluation of Endothelial Dysfunction. Angiology 2020;71(5):397-410. DOI: 10.1177/0003319720903586.
https://doi.org/10.1177/0003319720903586 |
149 | Fliser D, Buchholz K, Haller H, Olmesartan EUTo, Pravastatin in I, Atherosclerosis I: Antiinflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation 2004;110(9):1103-7. DOI: 10.1161/01.CIR.0000140265.21608.8E.
https://doi.org/10.1161/01.CIR.0000140265.21608.8E |
150 | Lee J, Lee M, Kim JU, Song KI, Choi YS, Cheong SS: Carvedilol reduces plasma 8-hydroxy-2'-deoxyguanosine in mild to moderate hypertension: a pilot study. Hypertension 2005;45(5):986-90. DOI: 10.1161/01.HYP.0000164569.63160.24.
https://doi.org/10.1161/01.HYP.0000164569.63160.24 |
151 | Palming J, Jansson PA, Renstrom F, Johansson A, Johansson L, Karlsson C, Lind L, Eriksson JW: Hydrochlorothiazide compared to candesartan treatment increases adipose tissue gene expression and circulating levels of serum amyloid A in hypertensive patients. Horm Metab Res 2011;43(5):319-24. DOI: 10.1055/s-0031-1271695.
https://doi.org/10.1055/s-0031-1271695 |
152 | Fukutomi M, Hoshide S, Eguchi K, Watanabe T, Kario K: Low-grade inflammation and ambulatory blood pressure response to antihypertensive treatment: the ALPHABET study. Am J Hypertens 2013;26(6):784-92. DOI: 10.1093/ajh/hpt024.
https://doi.org/10.1093/ajh/hpt024 |
153 | Liu Y, Dai S, Liu L, Liao H, Xiao C: Spironolactone is superior to hydrochlorothiazide for blood pressure control and arterial stiffness improvement: A prospective study. Medicine (Baltimore) 2018;97(16):e0500. DOI: 10.1097/MD.0000000000010500.
https://doi.org/10.1097/MD.0000000000010500 |
154 | Martinez-Martin FJ, Rodriguez-Rosas H, Peiro-Martinez I, Soriano-Perera P, Pedrianes-Martin P, Comi-Diaz C: Olmesartan/amlodipine vs olmesartan/hydrochlorothiazide in hypertensive patients with metabolic syndrome: the OLAS study. J Hum Hypertens 2011;25(6):346-53. DOI: 10.1038/jhh.2010.104.
https://doi.org/10.1038/jhh.2010.104 |
155 | Ruilope LM, Malacco E, Khder Y, Kandra A, Bonner G, Heintz D: Efficacy and tolerability of combination therapy with valsartan plus hydrochlorothiazide compared with amlodipine monotherapy in hypertensive patients with other cardiovascular risk factors: the VAST study. Clin Ther 2005;27(5):578-87. DOI: 10.1016/j.clinthera.2005.05.006.
https://doi.org/10.1016/j.clinthera.2005.05.006 |
156 | Sato K, Dohi Y, Kojima M, Takase H, Suzuki S, Ito S: Antioxidative effects of thiazide diuretics in refractory hypertensive patients. A randomized crossover trial of chlortalidone and trichlormethiazide. Arzneimittelforschung 2010;60(10):612-6. DOI: 10.1055/s-0031-1296334.
https://doi.org/10.1055/s-0031-1296334 |
157 | Samaha MM, Helal MG, El-Sherbiny M, Said E, Salem HA: Indapamide Increases IRS1 Expression and Modifies Adiponectin/NLRP3/PPARgamma Crosstalk in Type 2 Diabetic Rats. Antioxidants (Basel) 2022;11(4). DOI: 10.3390/antiox11040691.
https://doi.org/10.3390/antiox11040691 |
158 | Jin C, O'Boyle S, Kleven DT, Pollock JS, Pollock DM, White JJ: Antihypertensive and anti-inflammatory actions of combined azilsartan and chlorthalidone in Dahl salt-sensitive rats on a high-fat, high-salt diet. Clin Exp Pharmacol Physiol 2014;41(8):579-88. DOI: 10.1111/1440-1681.12250.
https://doi.org/10.1111/1440-1681.12250 |
159 | Dragasevic N, Savic M, Mihajlovic K, Zivkovic V, Andjic M, Draginic N, Zdravkovic N, Bolevich S, Bolevich S, Jakovljevic V, Nikolic Turnic T: The impact of different diuretics on regression of myocardial reperfusion injury in spontaneously hypertensive rats. Mol Cell Biochem 2023;478(8):1803-12. DOI: 10.1007/s11010-022-04622-x.
https://doi.org/10.1007/s11010-022-04622-x |
160 | Suliburska J, Krejpcio Z, Staniek H, Krol E, Bogdanski P, Kupsz J, Hertig I: The effects of antihypertensive drugs on chromium status, glucose metabolism, and antioxidant and inflammatory indices in spontaneously hypertensive rats. Biol Trace Elem Res 2014;157(1):60-6. DOI: 10.1007/s12011-013-9864-8.
https://doi.org/10.1007/s12011-013-9864-8 |
161 | Yamanari H, Nakamura K, Miura D, Yamanari S, Ohe T: Spironolactone and chlorthalidone in uncontrolled elderly hypertensive patients treated with calcium antagonists and angiotensin II receptor-blocker: effects on endothelial function, inflammation, and oxidative stress. Clin Exp Hypertens 2009;31(7):585-94. DOI: 10.3109/10641960902929438.
https://doi.org/10.3109/10641960902929438 |
162 | Gorenberg AE, Goldberg BJ, Kaplan MS, Lad PM, Easton JG: Effects of amiloride and furosemide on histamine release from human leukocytes induced by anti-IgE antibody. J Allergy Clin Immunol 1992;90(4 Pt 1):691-2. DOI: 10.1016/0091-6749(92)90146-s.
https://doi.org/10.1016/0091-6749(92)90146-S |
163 | Saba M, Davoodabadi A, Ghaffari A, Gilasi H, Haghpanah B: Combination adjunctive nebulized furosemide and salbutamol versus single agent therapy in COPD patients: A randomized controlled trial. Ann Med Surg (Lond) 2020;57:85-90. DOI: 10.1016/j.amsu.2020.07.005.
https://doi.org/10.1016/j.amsu.2020.07.005 |
164 | Kallet RH: The role of inhaled opioids and furosemide for the treatment of dyspnea. Respir Care 2007;52(7):900-10.
|
165 | Nuhoglu C, Yasar Kilic M, Ceran O: Effectiveness of nebulized furosemide added to nebulized salbutamol in children with acute asthma. Allergol Immunopathol (Madr) 2006;34(2):54-8. DOI: 10.1157/13086747.
https://doi.org/10.1157/13086747 |
166 | Alshehri M, Almegamesi T, Alfrayh A: Efficacy of nebulized furosemide in children with moderate attack of asthma. West Afr J Med 2005;24(3):246-51. DOI: 10.4314/wajm.v24i3.28207.
https://doi.org/10.4314/wajm.v24i3.28207 |
167 | Prandota J: Furosemide: progress in understanding its diuretic, anti-inflammatory, and bronchodilating mechanism of action, and use in the treatment of respiratory tract diseases. Am J Ther 2002;9(4):317-28. DOI: 10.1097/00045391-200207000-00009.
https://doi.org/10.1097/00045391-200207000-00009 |
168 | Pendino JC, Nannini LJ, Chapman KR, Slutsky A, Molfino NA: Effect of inhaled furosemide in acute asthma. J Asthma 1998;35(1):89-93. DOI: 10.3109/02770909809055409.
https://doi.org/10.3109/02770909809055409 |
169 | Ono Y, Kondo T, Tanigaki T, Ohta Y: Furosemide given by inhalation ameliorates acute exacerbation of asthma. J Asthma 1997;34(4):283-9. DOI: 10.3109/02770909709067218.
https://doi.org/10.3109/02770909709067218 |
170 | Munyard P, Chung KF, Bush A: Inhaled frusemide and exercise-induced bronchoconstriction in children with asthma. Thorax 1995;50(6):677-9. DOI: 10.1136/thx.50.6.677.
https://doi.org/10.1136/thx.50.6.677 |
171 | Chin T, Franchi L, Nussbaum E: Reversal of bronchial obstruction in children with mild stable asthma by aerosolized furosemide. Pediatr Pulmonol 1994;18(2):93-8. DOI: 10.1002/ppul.1950180207.
https://doi.org/10.1002/ppul.1950180207 |
172 | Bianco S, Vaghi A, Robuschi M, Pasargiklian M: Prevention of exercise-induced bronchoconstriction by inhaled frusemide. Lancet 1988;2(8605):252-5. DOI: 10.1016/s0140-6736(88)92540-8.
https://doi.org/10.1016/S0140-6736(88)92540-8 |
173 | Sheikhi A, Jaberi Y, Esmaeilzadeh A, Khani M, Moosaeefard M, Shafaqatian M: The effect of cardiovascular drugs on pro-inflammatory cytokine secretion and natural killer activity of peripheral blood mononuclear cells of patients with chronic heart failure in vitro. Pak J Biol Sci 2007;10(10):1580-7. DOI: 10.3923/pjbs.2007.1580.1587.
https://doi.org/10.3923/pjbs.2007.1580.1587 |
174 | Hung CM, Peng CK, Wu CP, Huang KL: Bumetanide attenuates acute lung injury by suppressing macrophage activation. Biochem Pharmacol 2018;156:60-67. DOI: 10.1016/j.bcp.2018.08.013.
https://doi.org/10.1016/j.bcp.2018.08.013 |
175 | Lan CC, Peng CK, Tang SE, Lin HJ, Yang SS, Wu CP, Huang KL: Inhibition of Na-K-Cl cotransporter isoform 1 reduces lung injury induced by ischemia-reperfusion. J Thorac Cardiovasc Surg 2017;153(1):206-15. DOI: 10.1016/j.jtcvs.2016.09.068.
https://doi.org/10.1016/j.jtcvs.2016.09.068 |
176 | Rapoport RM, Soleimani M: Mechanism of Thiazide Diuretic Arterial Pressure Reduction: The Search Continues. Front Pharmacol 2019;10:815. DOI: 10.3389/fphar.2019.00815.
https://doi.org/10.3389/fphar.2019.00815 |
177 | Roush GC, Buddharaju V, Ernst ME, Holford TR: Chlorthalidone: mechanisms of action and effect on cardiovascular events. Curr Hypertens Rep 2013;15(5):514-21. DOI: 10.1007/s11906-013-0372-1.
https://doi.org/10.1007/s11906-013-0372-1 |
178 | Silva IVG, de Figueiredo RC, Rios DRA: Effect of Different Classes of Antihypertensive Drugs on Endothelial Function and Inflammation. Int J Mol Sci 2019;20(14). DOI: 10.3390/ijms20143458.
https://doi.org/10.3390/ijms20143458 |
179 | Evans PL, Prior JA, Belcher J, Mallen CD, Hay CA, Roddy E: Obesity, hypertension and diuretic use as risk factors for incident gout: a systematic review and meta-analysis of cohort studies. Arthritis Res Ther 2018;20(1):136. DOI: 10.1186/s13075-018-1612-1.
https://doi.org/10.1186/s13075-018-1612-1 |
180 | Westendorp B, Hamming I, Szymanski MK, Navis G, van Goor H, Buikema H, van Gilst WH, Schoemaker RG: Adverse renal effects of hydrochlorothiazide in rats with myocardial infarction treated with an ACE inhibitor. Eur J Pharmacol 2009;602(2-3):373-9. DOI: 10.1016/j.ejphar.2008.11.055.
https://doi.org/10.1016/j.ejphar.2008.11.055 |
181 | Loffing J, Loffing-Cueni D, Hegyi I, Kaplan MR, Hebert SC, Le Hir M, Kaissling B: Thiazide treatment of rats provokes apoptosis in distal tubule cells. Kidney Int 1996;50(4):1180-90. DOI: 10.1038/ki.1996.426.
https://doi.org/10.1038/ki.1996.426 |
182 | Singh R, Kursan S, Almiahoub MY, Almutairi MM, Garzon-Muvdi T, Alvarez-Leefmans FJ, Di Fulvio M: Plasma Membrane Targeting of Endogenous NKCC2 in COS7 Cells Bypasses Functional Golgi Cisternae and Complex N-Glycosylation. Front Cell Dev Biol 2016;4:150. DOI: 10.3389/fcell.2016.00150.
https://doi.org/10.3389/fcell.2016.00150 |
183 | Bahro M, Gertig G, Pfeifer U: Short-term stimulation of cellular autophagy by furosemide in the thick ascending limb of Henle's loop in the rat kidney. Cell Tissue Res 1988;253(3):625-9. DOI: 10.1007/BF00219753.
https://doi.org/10.1007/BF00219753 |
184 | Veiras LC, Bernstein EA, Cao D, Okwan-Duodu D, Khan Z, Gibb DR, Roach A, Skelton R, Williams RM, Bernstein KE, Giani JF: Tubular IL-1beta Induces Salt Sensitivity in Diabetes by Activating Renal Macrophages. Circ Res 2022;131(1):59-73. DOI: 10.1161/CIRCRESAHA.121.320239.
https://doi.org/10.1161/CIRCRESAHA.121.320239 |
185 | Yamauchi T, Doi S, Nakashima A, Doi T, Sohara E, Uchida S, Masaki T: Na(+)-Cl(-) cotransporter-mediated chloride uptake contributes to hypertension and renal damage in aldosterone-infused rats. Am J Physiol Renal Physiol 2018;315(2):F300-F12. DOI: 10.1152/ajprenal.00504.2016.
https://doi.org/10.1152/ajprenal.00504.2016 |
186 | Itani HA, McMaster WG, Jr., Saleh MA, Nazarewicz RR, Mikolajczyk TP, Kaszuba AM, Konior A, Prejbisz A, Januszewicz A, Norlander AE, Chen W, Bonami RH, Marshall AF, Poffenberger G, Weyand CM, Madhur MS, Moore DJ, Harrison DG, Guzik TJ: Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans. Hypertension 2016;68(1):123-32. DOI: 10.1161/HYPERTENSIONAHA.116.07237.
https://doi.org/10.1161/HYPERTENSIONAHA.116.07237 |
187 | Wu J, Thabet SR, Kirabo A, Trott DW, Saleh MA, Xiao L, Madhur MS, Chen W, Harrison DG: Inflammation and mechanical stretch promote aortic stiffening in hypertension through activation of p38 mitogen-activated protein kinase. Circ Res 2014;114(4):616-25. DOI: 10.1161/CIRCRESAHA.114.302157.
https://doi.org/10.1161/CIRCRESAHA.114.302157 |
188 | Andrade-Oliveira V, Foresto-Neto O, Watanabe IKM, Zatz R, Camara NOS: Inflammation in Renal Diseases: New and Old Players. Front Pharmacol 2019;10:1192. DOI: 10.3389/fphar.2019.01192.
https://doi.org/10.3389/fphar.2019.01192 |
189 | Siragy HM, Xue C, Webb RL: Beneficial effects of combined benazepril-amlodipine on cardiac nitric oxide, cGMP, and TNF-alpha production after cardiac ischemia. J Cardiovasc Pharmacol 2006;47(5):636-42. DOI: 10.1097/01.fjc.0000211750.01326.b3.
https://doi.org/10.1097/01.fjc.0000211750.01326.b3 |
190 | Fukuzawa M, Satoh J, Ohta S, Takahashi K, Miyaguchi S, Qiang X, Sakata Y, Nakazawa T, Takizawa Y, Toyota T: Modulation of tumor necrosis factor-alpha production with anti-hypertensive drugs. Immunopharmacology 2000;48(1):65-74. DOI: 10.1016/s0162-3109(00)00179-x.
https://doi.org/10.1016/S0162-3109(00)00179-X |
191 | Nemati F, Rahbar-Roshandel N, Hosseini F, Mahmoudian M, Shafiei M: Anti-inflammatory effects of anti-hypertensive agents: influence on interleukin-1beta secretion by peripheral blood polymorphonuclear leukocytes from patients with essential hypertension. Clin Exp Hypertens 2011;33(2):66-76. DOI: 10.3109/10641963.2010.496521.
https://doi.org/10.3109/10641963.2010.496521 |
192 | Marvar PJ, Thabet SR, Guzik TJ, Lob HE, McCann LA, Weyand C, Gordon FJ, Harrison DG: Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ Res 2010;107(2):263-70. DOI: 10.1161/CIRCRESAHA.110.217299.
https://doi.org/10.1161/CIRCRESAHA.110.217299 |
193 | Zhou MS, Schulman IH, Jaimes EA, Raij L: Thiazide diuretics, endothelial function, and vascular oxidative stress. J Hypertens 2008;26(3):494-500. DOI: 10.1097/HJH.0b013e3282f3e39d.
https://doi.org/10.1097/HJH.0b013e3282f3e39d |
194 | Das S, Au E, Krazit ST, Pandey KN: Targeted disruption of guanylyl cyclase-A/natriuretic peptide receptor-A gene provokes renal fibrosis and remodeling in null mutant mice: role of proinflammatory cytokines. Endocrinology 2010;151(12):5841-50. DOI: 10.1210/en.2010-0655.
https://doi.org/10.1210/en.2010-0655 |
195 | Orejudo M, Garcia-Redondo AB, Rodrigues-Diez RR, Rodrigues-Diez R, Santos-Sanchez L, Tejera-Munoz A, Egido J, Selgas R, Salaices M, Briones AM, Ruiz-Ortega M: Interleukin-17A induces vascular remodeling of small arteries and blood pressure elevation. Clin Sci (Lond) 2020;134(5):513-27. DOI: 10.1042/CS20190682.
https://doi.org/10.1042/CS20190682 |
196 | Ma F, Lin F, Chen C, Cheng J, Zeldin DC, Wang Y, Wang DW: Indapamide lowers blood pressure by increasing production of epoxyeicosatrienoic acids in the kidney. Mol Pharmacol 2013;84(2):286-95. DOI: 10.1124/mol.113.085878.
https://doi.org/10.1124/mol.113.085878 |
197 | Singh P, Bahrami L, Castillo A, Majid DS: TNF-alpha type 2 receptor mediates renal inflammatory response to chronic angiotensin II administration with high salt intake in mice. Am J Physiol Renal Physiol 2013;304(7):F991-9. DOI: 10.1152/ajprenal.00525.2012.
https://doi.org/10.1152/ajprenal.00525.2012 |
198 | Marko L, Kvakan H, Park JK, Qadri F, Spallek B, Binger KJ, Bowman EP, Kleinewietfeld M, Fokuhl V, Dechend R, Muller DN: Interferon-gamma signaling inhibition ameliorates angiotensin II-induced cardiac damage. Hypertension 2012;60(6):1430-6. DOI: 10.1161/HYPERTENSIONAHA.112.199265.
https://doi.org/10.1161/HYPERTENSIONAHA.112.199265 |
199 | Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, Harrison DG: Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 2010;55(2):500-7. DOI: 10.1161/HYPERTENSIONAHA.109.145094.
https://doi.org/10.1161/HYPERTENSIONAHA.109.145094 |
200 | Thomas JM, Ling YH, Huuskes B, Jelinic M, Sharma P, Saini N, Ferens DM, Diep H, Krishnan SM, Kemp-Harper BK, O'Connor PM, Latz E, Arumugam TV, Guzik TJ, Hickey MJ, Mansell A, Sobey CG, Vinh A, Drummond GR: IL-18 (Interleukin-18) Produced by Renal Tubular Epithelial Cells Promotes Renal Inflammation and Injury During Deoxycorticosterone/Salt-Induced Hypertension in Mice. Hypertension 2021;78(5):1296-309. DOI: 10.1161/HYPERTENSIONAHA.120.16437.
https://doi.org/10.1161/HYPERTENSIONAHA.120.16437 |
201 | Wenzel P: Monocytes as immune targets in arterial hypertension. Br J Pharmacol 2019;176(12):1966-77. DOI: 10.1111/bph.14389.
https://doi.org/10.1111/bph.14389 |
202 | Boedtkjer E, Ara T: Strengthening the basics: acids and bases influence vascular structure and function, tissue perfusion, blood pressure, and human cardiovascular disease. Pflugers Arch 2024;476(4):623-37. DOI: 10.1007/s00424-024-02926-z.
https://doi.org/10.1007/s00424-024-02926-z |
203 | Baranauskiene L, Skiudaite L, Michailoviene V, Petrauskas V, Matulis D: Thiazide and other Cl-benzenesulfonamide-bearing clinical drug affinities for human carbonic anhydrases. PLoS One 2021;16(6):e0253608. DOI: 10.1371/journal.pone.0253608.
https://doi.org/10.1371/journal.pone.0253608 |
204 | Puscas I, Coltau M, Baican M, Domuta G, Hecht A: Vasodilatory effect of diuretics is dependent on inhibition of vascular smooth muscle carbonic anhydrase by a direct mechanism of action. Drugs Exp Clin Res 1999;25(6):271-9.
|
205 | Martin P, Moncada M, Kuntamallappanavar G, Dopico AM, Milesi V: Activation of human smooth muscle BK channels by hydrochlorothiazide requires cell integrity and the presence of BK beta(1) subunit. Acta Pharmacol Sin 2018;39(3):371-81. DOI: 10.1038/aps.2017.133.
https://doi.org/10.1038/aps.2017.133 |
206 | Calder JA, Schachter M, Sever PS: Potassium channel opening properties of thiazide diuretics in isolated guinea pig resistance arteries. J Cardiovasc Pharmacol 1994;24(1):158-64. DOI: 10.1097/00005344-199407000-00024.
https://doi.org/10.1097/00005344-199407000-00024 |
207 | Pickkers P, Hughes AD: Relaxation and decrease in [Ca2+]i by hydrochlorothiazide in guinea-pig isolated mesenteric arteries. Br J Pharmacol 1995;114(3):703-7. DOI: 10.1111/j.1476-5381.1995.tb17195.x.
https://doi.org/10.1111/j.1476-5381.1995.tb17195.x |
208 | Calder JA, Schachter M, Sever PS: Ion channel involvement in the acute vascular effects of thiazide diuretics and related compounds. J Pharmacol Exp Ther 1993;265(3):1175-80.
|
209 | Calder JA, Schachter M, Sever PS: Direct vascular actions of hydrochlorothiazide and indapamide in isolated small vessels. Eur J Pharmacol 1992;220(1):19-26. DOI: 10.1016/0014-2999(92)90006-p.
https://doi.org/10.1016/0014-2999(92)90006-P |
210 | Pickkers P, Hughes AD, Russel FG, Thien T, Smits P: Thiazide-induced vasodilation in humans is mediated by potassium channel activation. Hypertension 1998;32(6):1071-6. DOI: 10.1161/01.hyp.32.6.1071.
https://doi.org/10.1161/01.HYP.32.6.1071 |
211 | Alshahrani S, Rapoport RM, Zahedi K, Jiang M, Nieman M, Barone S, Meredith AL, Lorenz JN, Rubinstein J, Soleimani M: The non-diuretic hypotensive effects of thiazides are enhanced during volume depletion states. PLoS One 2017;12(7):e0181376. DOI: 10.1371/journal.pone.0181376.
https://doi.org/10.1371/journal.pone.0181376 |
212 | Zhou W, Wang C, Zhang B, Gou S: Hybrids of carbonic anhydrase and cyclooxygenase inhibitors attenuate cardiac hypoxic inflammatory injuries. Eur J Pharmacol 2023;950:175751. DOI: 10.1016/j.ejphar.2023.175751.
https://doi.org/10.1016/j.ejphar.2023.175751 |
213 | Strowitzki MJ, Nelson R, Garcia MP, Tuffs C, Bleul MB, Fitzsimons S, Navas J, Uzieliene I, Ritter AS, Phelan D, Kierans SJ, Blanco A, Bernotiene E, Belton O, Schneider M, Cummins EP, Taylor CT: Carbon Dioxide Sensing by Immune Cells Occurs through Carbonic Anhydrase 2-Dependent Changes in Intracellular pH. J Immunol 2022;208(10):2363-75. DOI: 10.4049/jimmunol.2100665.
https://doi.org/10.4049/jimmunol.2100665 |
214 | Berrino E, Carradori S, Angeli A, Carta F, Supuran CT, Guglielmi P, Coletti C, Paciotti R, Schweikl H, Maestrelli F, Cerbai E, Gallorini M: Dual Carbonic Anhydrase IX/XII Inhibitors and Carbon Monoxide Releasing Molecules Modulate LPS-Mediated Inflammation in Mouse Macrophages. Antioxidants (Basel) 2021;10(1). DOI: 10.3390/antiox10010056.
https://doi.org/10.3390/antiox10010056 |
215 | Hudalla H, Michael Z, Christodoulou N, Willis GR, Fernandez-Gonzalez A, Filatava EJ, Dieffenbach P, Fredenburgh LE, Stearman RS, Geraci MW, Kourembanas S, Christou H: Carbonic Anhydrase Inhibition Ameliorates Inflammation and Experimental Pulmonary Hypertension. Am J Respir Cell Mol Biol 2019;61(4):512-24. DOI: 10.1165/rcmb.2018-0232OC.
https://doi.org/10.1165/rcmb.2018-0232OC |
216 | Henry EK, Sy CB, Inclan-Rico JM, Espinosa V, Ghanny SS, Dwyer DF, Soteropoulos P, Rivera A, Siracusa MC: Carbonic anhydrase enzymes regulate mast cell-mediated inflammation. J Exp Med 2016;213(9):1663-73. DOI: 10.1084/jem.20151739.
https://doi.org/10.1084/jem.20151739 |
217 | Zhuang GZ, Keeler B, Grant J, Bianchi L, Fu ES, Zhang YP, Erasso DM, Cui JG, Wiltshire T, Li Q, Hao S, Sarantopoulos KD, Candiotti K, Wishnek SM, Smith SB, Maixner W, Diatchenko L, Martin ER, Levitt RC: Carbonic anhydrase-8 regulates inflammatory pain by inhibiting the ITPR1-cytosolic free calcium pathway. PLoS One 2015;10(3):e0118273. DOI: 10.1371/journal.pone.0118273.
https://doi.org/10.1371/journal.pone.0118273 |
218 | Zheng Y, Wang L, Zhang W, Xu H, Chang X: Transgenic mice over-expressing carbonic anhydrase I showed aggravated joint inflammation and tissue destruction. BMC Musculoskelet Disord 2012;13:256. DOI: 10.1186/1471-2474-13-256.
https://doi.org/10.1186/1471-2474-13-256 |
219 | Radhakrishnan R, Sluka KA: Acetazolamide, a carbonic anhydrase inhibitor, reverses inflammation-induced thermal hyperalgesia in rats. J Pharmacol Exp Ther 2005;313(2):921-7. DOI: 10.1124/jpet.104.082776.
https://doi.org/10.1124/jpet.104.082776 |
220 | Bataillard A, Schiavi P, Sassard J: Pharmacological properties of indapamide. Rationale for use in hypertension. Clin Pharmacokinet 1999;37 Suppl 1:7-12. DOI: 10.2165/00003088-199937001-00002.
https://doi.org/10.2165/00003088-199937001-00002 |
221 | Mironneau J, Savineau JP, Mironneau C: Compared effects of indapamide, hydrochlorothiazide and chlorthalidone on electrical and mechanical activities in vascular smooth muscle. Eur J Pharmacol 1981;75(2-3):109-13. DOI: 10.1016/0014-2999(81)90068-6.
https://doi.org/10.1016/0014-2999(81)90068-6 |
222 | Mironneau J: Indapamide-induced inhibition of calcium movement in smooth muscles. Am J Med 1988;84(1B):10-4.
https://doi.org/10.1016/0002-9343(88)90806-6 |
223 | Uehara Y, Shirahase H, Nagata T, Ishimitsu T, Morishita S, Osumi S, Matsuoka H, Sugimoto T: Radical scavengers of indapamide in prostacyclin synthesis in rat smooth muscle cell. Hypertension 1990;15(2):216-24. DOI: 10.1161/01.hyp.15.2.216.
https://doi.org/10.1161/01.HYP.15.2.216 |
224 | Muscedere J, Maslove DM, Barden CJ, Weaver DF, Boyd JG, Sibley S, Boyd T, Rewa O, Albert M, Roussos M, Norman PA, Day AG: Nebulized Furosemide for Pulmonary Inflammation in Intubated Patients With COVID-19: A Phase 2 Randomized Controlled Double-Blind Study. Crit Care Explor 2024;6(2):e1045. DOI: 10.1097/CCE.0000000000001045.
https://doi.org/10.1097/CCE.0000000000001045 |
225 | Murad H, Ghabrah T, Rafeeq M, Ali S: Subdiuretic dose of furosemide enhances albuterol effects in asthmatic mice rather than bumetanide. Allergol Immunopathol (Madr) 2018;46(6):585-93. DOI: 10.1016/j.aller.2018.05.001.
https://doi.org/10.1016/j.aller.2018.05.001 |
226 | Wang S, Xiang YY, Ellis R, Wattie J, Feng M, Inman MD, Lu WY: Effects of furosemide on allergic asthmatic responses in mice. Clin Exp Allergy 2011;41(10):1456-67. DOI: 10.1111/j.1365-2222.2011.03811.x.
https://doi.org/10.1111/j.1365-2222.2011.03811.x |
227 | Bryniarski P, Nazimek K, Marcinkiewicz J: Captopril Combined with Furosemide or Hydrochlorothiazide Affects Macrophage Functions in Mouse Contact Hypersensitivity Response. Int J Mol Sci 2021;23(1). DOI: 10.3390/ijms23010074.
https://doi.org/10.3390/ijms23010074 |
228 | Bryniarski P, Nazimek K, Marcinkiewicz J: Anti-Inflammatory Activities of Captopril and Diuretics on Macrophage Activity in Mouse Humoral Immune Response. Int J Mol Sci 2021;22(21). DOI: 10.3390/ijms222111374.
https://doi.org/10.3390/ijms222111374 |
229 | Cieslik M, Strobel SD, Bryniarski P, Twardowska H, Chmielowski A, Rudek M, Felkle D, Zieba K, Kaleta K, Jarczynski M, Nowak B, Bryniarski K, Nazimek K: Hypotensive drugs mitigate the high-sodium diet-induced pro-inflammatory activation of mouse macrophages in vivo. Biomed Pharmacother 2024;175:116648. DOI: 10.1016/j.biopha.2024.116648.
https://doi.org/10.1016/j.biopha.2024.116648 |
230 | Bryniarski P, Nazimek K, Marcinkiewicz J: Immunomodulatory Activity of the Most Commonly Used Antihypertensive Drugs-Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers. Int J Mol Sci 2022;23(3). DOI: 10.3390/ijms23031772.
https://doi.org/10.3390/ijms23031772 |
231 | Mitini-Nkhoma SC, Fernando N, Ishaka GKD, Handunnetti SM, Pathirana SL: Ion Transport Modulators Differentially Modulate Inflammatory Responses in THP-1-Derived Macrophages. J Immunol Res 2021;2021:8832586. DOI: 10.1155/2021/8832586.
https://doi.org/10.1155/2021/8832586 |
232 | Hofbauer R, Frass M, Pasching E, Gmeiner B, Kaye AD, Kapiotis S: Furosemide and spironolactone reduce transmigration of leukocytes through endothelial cell monolayers. J Toxicol Environ Health A 2002;65(9):685-93. DOI: 10.1080/15287390252900386.
https://doi.org/10.1080/15287390252900386 |
233 | Wang Z, Wang Y, Vilekar P, Yang SP, Gupta M, Oh MI, Meek A, Doyle L, Villar L, Brennecke A, Liyanage I, Reed M, Barden C, Weaver DF: Small molecule therapeutics for COVID-19: repurposing of inhaled furosemide. PeerJ 2020;8:e9533. DOI: 10.7717/peerj.9533.
https://doi.org/10.7717/peerj.9533 |
234 | Yuengsrigul A, Chin TW, Nussbaum E: Immunosuppressive and cytotoxic effects of furosemide on human peripheral blood mononuclear cells. Ann Allergy Asthma Immunol 1999;83(6 Pt 1):559-66. DOI: 10.1016/S1081-1206(10)62870-0.
https://doi.org/10.1016/S1081-1206(10)62870-0 |
235 | Xu B, Makris A, Thornton C, Ogle R, Horvath JS, Hennessy A: Antihypertensive drugs clonidine, diazoxide, hydralazine and furosemide regulate the production of cytokines by placentas and peripheral blood mononuclear cells in normal pregnancy. J Hypertens 2006;24(5):915-22. DOI: 10.1097/01.hjh.0000222762.84605.03.
https://doi.org/10.1097/01.hjh.0000222762.84605.03 |
236 | Rump K, Koos B, Ziehe D, Thon P, Rahmel T, Palmowski L, Marko B, Wolf A, Witowski A, Bazzi Z, Bazzi M, Orlowski J, Adamzik M, Bergmann L, Unterberg M: Methazolamide Reduces the AQP5 mRNA Expression and Immune Cell Migration-A New Potential Drug in Sepsis Therapy? Int J Mol Sci 2024;25(1). DOI: 10.3390/ijms25010610.
https://doi.org/10.3390/ijms25010610 |
237 | Solymosi EA, Kaestle-Gembardt SM, Vadasz I, Wang L, Neye N, Chupin CJ, Rozowsky S, Ruehl R, Tabuchi A, Schulz H, Kapus A, Morty RE, Kuebler WM: Chloride transport-driven alveolar fluid secretion is a major contributor to cardiogenic lung edema. Proc Natl Acad Sci U S A 2013;110(25):E2308-16. DOI: 10.1073/pnas.1216382110.
https://doi.org/10.1073/pnas.1216382110 |
238 | Nguyen M, Pace AJ, Koller BH: Mice lacking NKCC1 are protected from development of bacteremia and hypothermic sepsis secondary to bacterial pneumonia. J Exp Med 2007;204(6):1383-93. DOI: 10.1084/jem.20061205.
https://doi.org/10.1084/jem.20061205 |
239 | Shen CH, Lin JY, Chang YL, Wu SY, Peng CK, Wu CP, Huang KL: Inhibition of NKCC1 Modulates Alveolar Fluid Clearance and Inflammation in Ischemia-Reperfusion Lung Injury via TRAF6-Mediated Pathways. Front Immunol 2018;9:2049. DOI: 10.3389/fimmu.2018.02049.
https://doi.org/10.3389/fimmu.2018.02049 |
240 | Yan Y, Dalmasso G, Nguyen HT, Obertone TS, Charrier-Hisamuddin L, Sitaraman SV, Merlin D: Nuclear factor-kappaB is a critical mediator of Ste20-like proline-/alanine-rich kinase regulation in intestinal inflammation. Am J Pathol 2008;173(4):1013-28. DOI: 10.2353/ajpath.2008.080339.
https://doi.org/10.2353/ajpath.2008.080339 |
241 | Morioka S, Perry JSA, Raymond MH, Medina CB, Zhu Y, Zhao L, Serbulea V, Onengut-Gumuscu S, Leitinger N, Kucenas S, Rathmell JC, Makowski L, Ravichandran KS: Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 2018;563(7733):714-18. DOI: 10.1038/s41586-018-0735-5.
https://doi.org/10.1038/s41586-018-0735-5 |
242 | Yan Y, Merlin D: Ste20-related proline/alanine-rich kinase: a novel regulator of intestinal inflammation. World J Gastroenterol 2008;14(40):6115-21. DOI: 10.3748/wjg.14.6115.
https://doi.org/10.3748/wjg.14.6115 |
243 | Lin HJ, Wu CP, Peng CK, Lin SH, Uchida S, Yang SS, Huang KL: With-No-Lysine Kinase 4 Mediates Alveolar Fluid Regulation in Hyperoxia-Induced Lung Injury. Crit Care Med 2015;43(10):e412-9. DOI: 10.1097/CCM.0000000000001144.
https://doi.org/10.1097/CCM.0000000000001144 |
244 | Cho S, Soumare F, Mumford SL, Rosas PC, Abrieva Z, Davis JM, Hamidovic A: Peripheral Blood Mononuclear Cell Expression of Cation-Chloride Cotransporter (CCC) Genes in Premenstrual Dysphoric Disorder (PMDD) across the Menstrual Cycle-A Preliminary Study. Biology (Basel) 2024;13(6). DOI: 10.3390/biology13060377.
https://doi.org/10.3390/biology13060377 |
245 | de Boer LL, Vanes L, Melgrati S, Biggs O'May J, Hayward D, Driscoll PC, Day J, Griffiths A, Magueta R, Morrell A, MacRae JI, Kochl R, Tybulewicz VLJ: T cell migration requires ion and water influx to regulate actin polymerization. Nat Commun 2023;14(1):7844. DOI: 10.1038/s41467-023-43423-8.
https://doi.org/10.1038/s41467-023-43423-8 |
246 | Joshi RN, Stadler C, Lehmann R, Lehtio J, Tegner J, Schmidt A, Vesterlund M: TcellSubC: An Atlas of the Subcellular Proteome of Human T Cells. Front Immunol 2019;10:2708. DOI: 10.3389/fimmu.2019.02708.
https://doi.org/10.3389/fimmu.2019.02708 |
247 | Kochl R, Thelen F, Vanes L, Brazao TF, Fountain K, Xie J, Huang CL, Lyck R, Stein JV, Tybulewicz VL: WNK1 kinase balances T cell adhesion versus migration in vivo. Nat Immunol 2016;17(9):1075-83. DOI: 10.1038/ni.3495.
https://doi.org/10.1038/ni.3495 |
248 | Bhandage AK, Hellgren C, Jin Z, Olafsson EB, Sundstrom-Poromaa I, Birnir B: Expression of GABA receptors subunits in peripheral blood mononuclear cells is gender dependent, altered in pregnancy and modified by mental health. Acta Physiol (Oxf) 2015;213(3):575-85. DOI: 10.1111/apha.12440.
https://doi.org/10.1111/apha.12440 |
249 | Sun YT, Shieh CC, Delpire E, Shen MR: K(+)-Cl(-) cotransport mediates the bactericidal activity of neutrophils by regulating NADPH oxidase activation. J Physiol 2012;590(14):3231-43. DOI: 10.1113/jphysiol.2011.225300.
https://doi.org/10.1113/jphysiol.2011.225300 |
250 | Busetto S, Trevisan E, Decleva E, Dri P, Menegazzi R: Chloride movements in human neutrophils during phagocytosis: characterization and relationship to granule release. J Immunol 2007;179(6):4110-24. DOI: 10.4049/jimmunol.179.6.4110.
https://doi.org/10.4049/jimmunol.179.6.4110 |
251 | Menegazzi R, Busetto S, Decleva E, Cramer R, Dri P, Patriarca P: Triggering of chloride ion efflux from human neutrophils as a novel function of leukocyte beta 2 integrins: relationship with spreading and activation of the respiratory burst. J Immunol 1999;162(1):423-34.
https://doi.org/10.4049/jimmunol.162.1.423 |
252 | Menegazzi R, Busetto S, Dri P, Cramer R, Patriarca P: Chloride ion efflux regulates adherence, spreading, and respiratory burst of neutrophils stimulated by tumor necrosis factor-alpha (TNF) on biologic surfaces. J Cell Biol 1996;135(2):511-22. DOI: 10.1083/jcb.135.2.511.
https://doi.org/10.1083/jcb.135.2.511 |
253 | Alvarez-Leefmans F. Intracellular Chloride Regulation. Cell Physiology Sourcebook: Essentials of Membrane Biophysics. Amsterdam ; Boston: Elsevier/AP; 2012. p. 221-59.
https://doi.org/10.1016/B978-0-12-387738-3.00015-9 |
254 | Valdivieso AG, Santa-Coloma TA: The chloride anion as a signalling effector. Biol Rev Camb Philos Soc 2019;94(5):1839-56. DOI: 10.1111/brv.12536.
https://doi.org/10.1111/brv.12536 |
255 | Di Fulvio M, Aguilar-Bryan L: Chloride transporters and channels in beta-cell physiology: revisiting a 40-year-old model. Biochem Soc Trans 2019;47(6):1843-55. DOI: 10.1042/BST20190513.
https://doi.org/10.1042/BST20190513 |
256 | Pressey JC, de Saint-Rome M, Raveendran VA, Woodin MA: Chloride transporters controlling neuronal excitability. Physiol Rev 2023;103(2):1095-135. DOI: 10.1152/physrev.00025.2021.
https://doi.org/10.1152/physrev.00025.2021 |
257 | Jentsch TJ: Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters. J Physiol 2007;578(Pt 3):633-40. DOI: 10.1113/jphysiol.2006.124719.
https://doi.org/10.1113/jphysiol.2006.124719 |
258 | Wang G: Chloride flux in phagocytes. Immunol Rev 2016;273(1):219-31. DOI: 10.1111/imr.12438.
https://doi.org/10.1111/imr.12438 |
259 | Miyazaki H, Shiozaki A, Niisato N, Ohsawa R, Itoi H, Ueda Y, Otsuji E, Yamagishi H, Iwasaki Y, Nakano T, Nakahari T, Marunaka Y: Chloride ions control the G1/S cell-cycle checkpoint by regulating the expression of p21 through a p53-independent pathway in human gastric cancer cells. Biochem Biophys Res Commun 2008;366(2):506-12. DOI: 10.1016/j.bbrc.2007.11.144.
https://doi.org/10.1016/j.bbrc.2007.11.144 |
260 | Valdivieso AG, Clauzure M, Massip-Copiz M, Santa-Coloma TA: The Chloride Anion Acts as a Second Messenger in Mammalian Cells - Modifying the Expression of Specific Genes. Cell Physiol Biochem 2016;38(1):49-64. DOI: 10.1159/000438608.
https://doi.org/10.1159/000438608 |
261 | Clauzure M, Valdivieso AG, Massip-Copiz MM, Mori C, Dugour AV, Figueroa JM, Santa-Coloma TA: Intracellular Chloride Concentration Changes Modulate IL-1beta Expression and Secretion in Human Bronchial Epithelial Cultured Cells. J Cell Biochem 2017;118(8):2131-40. DOI: 10.1002/jcb.25850.
https://doi.org/10.1002/jcb.25850 |
262 | Backstrom S, Wolf-Watz M, Grundstrom C, Hard T, Grundstrom T, Sauer UH: The RUNX1 Runt domain at 1.25A resolution: a structural switch and specifically bound chloride ions modulate DNA binding. J Mol Biol 2002;322(2):259-72. DOI: 10.1016/s0022-2836(02)00702-7.
https://doi.org/10.1016/S0022-2836(02)00702-7 |
263 | Wolf-Watz M, Backstrom S, Grundstrom T, Sauer U, Hard T: Chloride binding by the AML1/Runx1 transcription factor studied by NMR. FEBS Lett 2001;488(1-2):81-4. DOI: 10.1016/s0014-5793(00)02390-5.
https://doi.org/10.1016/S0014-5793(00)02390-5 |
264 | Fiedler TJ, Davey CA, Fenna RE: X-ray crystal structure and characterization of halide-binding sites of human myeloperoxidase at 1.8 A resolution. J Biol Chem 2000;275(16):11964-71. DOI: 10.1074/jbc.275.16.11964.
https://doi.org/10.1074/jbc.275.16.11964 |
265 | Yu H, Zhang Z, Lis A, Penner R, Fleig A: TRPM7 is regulated by halides through its kinase domain. Cell Mol Life Sci 2013;70(15):2757-71. DOI: 10.1007/s00018-013-1284-6.
https://doi.org/10.1007/s00018-013-1284-6 |
266 | Demian WL, Persaud A, Jiang C, Coyaud E, Liu S, Kapus A, Kafri R, Raught B, Rotin D: The Ion Transporter NKCC1 Links Cell Volume to Cell Mass Regulation by Suppressing mTORC1. Cell Rep 2019;27(6):1886-96 e6. DOI: 10.1016/j.celrep.2019.04.034.
https://doi.org/10.1016/j.celrep.2019.04.034 |
267 | Chen JC, Lo YF, Lin YW, Lin SH, Huang CL, Cheng CJ: WNK4 kinase is a physiological intracellular chloride sensor. Proc Natl Acad Sci U S A 2019;116(10):4502-07. DOI: 10.1073/pnas.1817220116.
https://doi.org/10.1073/pnas.1817220116 |
268 | Piala AT, Moon TM, Akella R, He H, Cobb MH, Goldsmith EJ: Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci Signal 2014;7(324):ra41. DOI: 10.1126/scisignal.2005050.
https://doi.org/10.1126/scisignal.2005050 |
269 | Lai ZF, Chen YZ, Nishi K: Modulation of intracellular Cl- homeostasis by lectin-stimulation in Jurkat T lymphocytes. Eur J Pharmacol 2003;482(1-3):1-8. DOI: 10.1016/s0014-2999(03)02076-4.
https://doi.org/10.1016/S0014-2999(03)02076-4 |
270 | Ohsawa R, Miyazaki H, Niisato N, Shiozaki A, Iwasaki Y, Otsuji E, Marunaka Y: Intracellular chloride regulates cell proliferation through the activation of stress-activated protein kinases in MKN28 human gastric cancer cells. J Cell Physiol 2010;223(3):764-70. DOI: 10.1002/jcp.22088.
https://doi.org/10.1002/jcp.22088 |
271 | Davies LC, Jenkins SJ, Allen JE, Taylor PR: Tissue-resident macrophages. Nat Immunol 2013;14(10):986-95. DOI: 10.1038/ni.2705.
https://doi.org/10.1038/ni.2705 |
272 | Yang H, Huang LY, Zeng DY, Huang EW, Liang SJ, Tang YB, Su YX, Tao J, Shang F, Wu QQ, Xiong LX, Lv XF, Liu J, Guan YY, Zhou JG: Decrease of intracellular chloride concentration promotes endothelial cell inflammation by activating nuclear factor-kappaB pathway. Hypertension 2012;60(5):1287-93. DOI: 10.1161/HYPERTENSIONAHA.112.198648.
https://doi.org/10.1161/HYPERTENSIONAHA.112.198648 |
273 | Menegazzi R, Busetto S, Cramer R, Dri P, Patriarca P: Role of intracellular chloride in the reversible activation of neutrophil beta 2 integrins: a lesson from TNF stimulation. J Immunol 2000;165(8):4606-14. DOI: 10.4049/jimmunol.165.8.4606.
https://doi.org/10.4049/jimmunol.165.8.4606 |
274 | Maldonado D, Schumann M, Nghiem P, Dong Y, Gardner P: Prostaglandin E1 activates a chloride current in Jurkat T lymphocytes via cAMP-dependent protein kinase. FASEB J 1991;5(14):2965-70. DOI: 10.1096/fasebj.5.14.1721593.
https://doi.org/10.1096/fasebj.5.14.1721593 |
275 | Koumangoye R: The role of Cl(-) and K(+) efflux in NLRP3 inflammasome and innate immune response activation. Am J Physiol Cell Physiol 2022;322(4):C645-C52. DOI: 10.1152/ajpcell.00421.2021.
https://doi.org/10.1152/ajpcell.00421.2021 |
276 | Green JP, Yu S, Martin-Sanchez F, Pelegrin P, Lopez-Castejon G, Lawrence CB, Brough D: Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming. Proc Natl Acad Sci U S A 2018;115(40):E9371-E80. DOI: 10.1073/pnas.1812744115.
https://doi.org/10.1073/pnas.1812744115 |
277 | Compan V, Baroja-Mazo A, Lopez-Castejon G, Gomez AI, Martinez CM, Angosto D, Montero MT, Herranz AS, Bazan E, Reimers D, Mulero V, Pelegrin P: Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 2012;37(3):487-500. DOI: 10.1016/j.immuni.2012.06.013.
https://doi.org/10.1016/j.immuni.2012.06.013 |
278 | Tang T, Lang X, Xu C, Wang X, Gong T, Yang Y, Cui J, Bai L, Wang J, Jiang W, Zhou R: CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nat Commun 2017;8(1):202. DOI: 10.1038/s41467-017-00227-x.
https://doi.org/10.1038/s41467-017-00227-x |
279 | Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G: K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 2013;38(6):1142-53. DOI: 10.1016/j.immuni.2013.05.016.
https://doi.org/10.1016/j.immuni.2013.05.016 |
280 | Perregaux D, Gabel CA: Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 1994;269(21):15195-203.
https://doi.org/10.1016/S0021-9258(17)36591-2 |
281 | Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM, Dixit VD: The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 2011;17(2):179-88. DOI: 10.1038/nm.2279.
https://doi.org/10.1038/nm.2279 |
282 | Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yoshihara E, Chen Z, Mullooly N, Mielke LA, Harris J, Coll RC, Mills KH, Mok KH, Newsholme P, Nunez G, Yodoi J, Kahn SE, Lavelle EC, O'Neill LA: Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 2010;11(10):897-904. DOI: 10.1038/ni.1935.
https://doi.org/10.1038/ni.1935 |
283 | Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, Brickey WJ, Ting JP: Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 2011;12(5):408-15. DOI: 10.1038/ni.2022.
https://doi.org/10.1038/ni.2022 |
284 | Guo H, Callaway JB, Ting JP: Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 2015;21(7):677-87. DOI: 10.1038/nm.3893.
https://doi.org/10.1038/nm.3893 |
285 | Fu J, Wu H: Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annu Rev Immunol 2023;41:301-16. DOI: 10.1146/annurev-immunol-081022-021207.
https://doi.org/10.1146/annurev-immunol-081022-021207 |
286 | Elliott MR, Koster KM, Murphy PS: Efferocytosis Signaling in the Regulation of Macrophage Inflammatory Responses. J Immunol 2017;198(4):1387-94. DOI: 10.4049/jimmunol.1601520.
https://doi.org/10.4049/jimmunol.1601520 |
287 | Mayes-Hopfinger L, Enache A, Xie J, Huang CL, Kochl R, Tybulewicz VLJ, Fernandes-Alnemri T, Alnemri ES: Chloride sensing by WNK1 regulates NLRP3 inflammasome activation and pyroptosis. Nat Commun 2021;12(1):4546. DOI: 10.1038/s41467-021-24784-4.
https://doi.org/10.1038/s41467-021-24784-4 |